Composition of the Water-Soluble Soil Fraction on the Barents Sea Coast: Organic Carbon and Nitrogen, Low-Molecular Weight Components

2019 ◽  
Vol 52 (11) ◽  
pp. 1347-1362 ◽  
Author(s):  
E. V. Shamrikova ◽  
O. S. Kubik ◽  
S. V. Deneva ◽  
V. V. Punegov
2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Netty Widyastuti ◽  
Teguh Baruji ◽  
Henky Isnawan ◽  
Priyo Wahyudi ◽  
Donowati Donowati

Beta glucan is a polysaccharide compound, generally not soluble inwater and resistant to acid. Beta glucan is used as an immunomodulator (enhancing the immune system) in mammals is usually a beta-glucan soluble in water, easily absorbed and has a low molecular weight. Several example of beta-glucan such as cellulose (β-1 ,4-glucan), lentinan (β-1 0.6-glucan) and (β-1 ,3-glucan), pleuran (β-1, 6 and β-1 ,3-glucan) are isolated from species of fungi Basidiomycota include mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes).The purpose of thisresearch activity is to obtain beta-glucan compound that can be dissolved in water and in alkali derived from fungi Basidiomycota, i.e, Oyster mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes). The result of beta-glucan compared to characterize the resulting beta glucan that is molecular structure . The difference of beta glucan extraction is based on the differences in solubility of beta-glucan. Beta glucan could be water soluble and insoluble water.


Cellulose ◽  
2011 ◽  
Vol 18 (4) ◽  
pp. 929-936 ◽  
Author(s):  
Yukiko Enomoto-Rogers ◽  
Hiroshi Kamitakahara ◽  
Arata Yoshinaga ◽  
Toshiyuki Takano

2013 ◽  
Vol 46 (6) ◽  
pp. 654-659 ◽  
Author(s):  
E. V. Shamrikova ◽  
I. V. Gruzdev ◽  
V. V. Punegov ◽  
F. M. Khabibullina ◽  
O. S. Kubik

1998 ◽  
Vol 17 (6) ◽  
pp. 975-981 ◽  
Author(s):  
Cathleen J. Hapeman ◽  
Susanna Bilboulian ◽  
Brent G. Anderson ◽  
Alba Torrents

2011 ◽  
Vol 51 (No. 4) ◽  
pp. 165-172 ◽  
Author(s):  
R. Dufková ◽  
T. Kvítek ◽  
J. Voldřichová

Extensive management (absence of management) of unfertilized permanent grasslands was examined for five years from the aspect of its influence on soil chemical properties of horizon A in a floodplain locality of the Crystalline Complex, in relation to water regime regulation, reclamations and liming. These treatments: without mowing (0), one cut (1) and two cuts (2) per year were used at sites without drainage (WD), with drainage (D) and with drainage water retardation (R). These average values were measured at all sites and for all treatments: content of soil organic carbon C<sub>org</sub> 2.3&ndash;3.4%, combustible substances CS 12&ndash;15%, humic to fulvic acids ratio C<sub>HA</sub>/C<sub>FA</sub> 0.81&ndash;0.94, C/N 8&ndash;9, humification rate 0.6&ndash;0.7, exchange pH 3.9&ndash;5.1. All sites have deteriorated conditions for the activity of soil microorganisms (low pH). Determinations of the contents of organic carbon (C<sub>org</sub> by thermal combustion, water soluble and hot water soluble carbon, C<sub>HA</sub> and C<sub>FA</sub>), CS and total nitrogen indicated decreases as a result of the influence of factors (drainage, liming, mowing) supporting mineralization and the cycle of soil organic matter. Mowing improved humus quality


Sign in / Sign up

Export Citation Format

Share Document