Time synchronization of the data of a training sample and the data of recognized objects in classification problems in the course of interpretation of space images of the Earth’s surface

2009 ◽  
Vol 48 (1) ◽  
pp. 121-130
Author(s):  
V. N. Evdokimenkov ◽  
R. V. Kim
2021 ◽  
pp. 125-130
Author(s):  
Francesco D. d'Ovidio ◽  
Angela Maria D'Uggento ◽  
Rossana Mancarella ◽  
Ernesto Toma

It is well known that, in classification problems, the predictive capacity of any decision-making model decreases rapidly with increasing asymmetry of the target variable (Sonquist et al., 1973; Fielding 1977). In particular, in segmentation analysis with a categorical target variable, very poor improvements of purity are obtained when the least represented modality counts less than 1/4 of the cases of the most represented modality. The same problem arises with other (theoretically more exhaustive) techniques such as Artificial Neural Networks. Actually, the optimal situation for classification analyses is the maximum uncertainty, that is, equidistribution of the target variable. Some classification techniques are more robust, by using, for example, the less sensitive logit transformation of the target variable (Fabbris & Martini 2002); however, also the logit transformation is strongly affected by the distributive asymmetry of the target variable. In this paper, starting from the results of a direct survey in which the target (binary) variable was extremely asymmetrical (10% vs. 90%, or greater asymmetry), we noted that also the logit model with the most significant parameters had very reduced fitting measures and almost zero predictive power. To solve this predictive issue, we tested post-stratification techniques, artificially symmetrizing a training sample. In this way, a substantially increase of fitting and predictive capacity was achieved, both in the symmetrized sample and, above all, in the original sample. In conclusion of the paper, an application of the same technique to a dataset of very different nature and size is described, demonstrating that the method is stable even in the case of analysis executed with all data of a population.


2021 ◽  
Vol 32 (2) ◽  
pp. 20-25
Author(s):  
Efraim Kurniawan Dairo Kette

In pattern recognition, the k-Nearest Neighbor (kNN) algorithm is the simplest non-parametric algorithm. Due to its simplicity, the model cases and the quality of the training data itself usually influence kNN algorithm classification performance. Therefore, this article proposes a sparse correlation weight model, combined with the Training Data Set Cleaning (TDC) method by Classification Ability Ranking (CAR) called the CAR classification method based on Coefficient-Weighted kNN (CAR-CWKNN) to improve kNN classifier performance. Correlation weight in Sparse Representation (SR) has been proven can increase classification accuracy. The SR can show the 'neighborhood' structure of the data, which is why it is very suitable for classification based on the Nearest Neighbor. The Classification Ability (CA) function is applied to classify the best training sample data based on rank in the cleaning stage. The Leave One Out (LV1) concept in the CA works by cleaning data that is considered likely to have the wrong classification results from the original training data, thereby reducing the influence of the training sample data quality on the kNN classification performance. The results of experiments with four public UCI data sets related to classification problems show that the CAR-CWKNN method provides better performance in terms of accuracy.


2020 ◽  
Vol 44 (5) ◽  
pp. 830-842
Author(s):  
A.E. Sulavko

An abstract model of an artificial immune network (AIS) based on a classifier committee and robust learning algorithms (with and without a teacher) for classification problems, which are characterized by small volumes and low representativeness of training samples, are proposed. Evaluation of the effectiveness of the model and algorithms is carried out by the example of the authentication task using keyboard handwriting using 3 databases of biometric metrics. The AIS developed possesses emergence, memory, double plasticity, and stability of learning. Experiments have shown that AIS gives a smaller or comparable percentage of errors with a much smaller training sample than neural networks with certain architectures.


2000 ◽  
Vol 6 (2-3) ◽  
pp. 31-38
Author(s):  
V.I. Lyalko ◽  
L.A. Sirenko ◽  
O.D. Fedorovskyi ◽  
A.Y. Khodorovsky ◽  
V.M. Shestopalov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document