Homogeneous Ricci solitons on four-dimensional Lie groups with a left-invariant Riemannian metric

2015 ◽  
Vol 92 (3) ◽  
pp. 701-703 ◽  
Author(s):  
P. N. Klepikov ◽  
D. N. Oskorbin ◽  
E. D. Rodionov
2008 ◽  
Vol 77 (2) ◽  
pp. 306-309 ◽  
Author(s):  
O. P. Gladunova ◽  
E. D. Rodionov ◽  
V. V. Slavskii

Author(s):  
D.V. Vylegzhanin ◽  
P.N. Klepikov ◽  
E.D. Rodionov ◽  
O.P. Khromova

Metric connections with vector torsion, or semisymmetric connections, were first discovered by E. Cartan. They are a natural generalization of the Levi-Civita connection. The properties of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano, and other mathematicians. Ricci solitons are the solution to the Ricci flow and a natural generalization of Einstein's metrics. In the general case, they were investigated by many mathematicians, which was reflected in the reviews by H.-D. Cao, R.M. Aroyo — R. Lafuente. This question is best studied in the case of trivial Ricci solitons, or Einstein metrics, as well as the homogeneous Riemannian case. This paper investigates semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional non-unimodularLie groups with the left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that there are nontrivial invariant semisymmetric connections in this case. In addition, it is shown that there are nontrivial invariant Ricci solitons.


2021 ◽  
Vol 60 (1) ◽  
pp. 23-29
Author(s):  
Pavel N. Klepikov ◽  
Evgeny D. Rodionov ◽  
Olesya P. Khromova

Semisymmetric connections were first discovered by E. Cartan and are a natural generalization of the Levi-Civita connection. The properties of the parallel transfer of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano and other mathematicians. In this paper, a mathematical model is constructed for studying semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional unimodular Lie groups with left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that in this case there are nontrivial invariant semisimetric connections. Previously, the authors carried out similar studies in the class of Einstein metrics.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Takahiro Hashinaga ◽  
Hiroshi Tamaru

In this paper, we define the corresponding submanifolds to left-invariant Riemannian metrics on Lie groups, and study the following question: does a distinguished left-invariant Riemannian metric on a Lie group correspond to a distinguished submanifold? As a result, we prove that the solvsolitons on three-dimensional simply-connected solvable Lie groups are completely characterized by the minimality of the corresponding submanifolds.


2020 ◽  
Vol 17 (08) ◽  
pp. 2050112
Author(s):  
Masoumeh Hosseini ◽  
Hamid Reza Salimi Moghaddam

In this paper, we classify all simply connected five-dimensional nilpotent Lie groups which admit [Formula: see text]-metrics of Berwald and Douglas type defined by a left invariant Riemannian metric and a left invariant vector field. During this classification, we give the geodesic vectors, Levi-Civita connection, curvature tensor, sectional curvature and [Formula: see text]-curvature.


Author(s):  
Pavel Nikolaevich Klepikov ◽  
◽  
Evgeny Dmitrievich Rodionov ◽  
Olesya Pavlovna Khromova ◽  
◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


2017 ◽  
Vol 95 (1) ◽  
pp. 62-64
Author(s):  
P. N. Klepikov ◽  
E. D. Rodionov

Sign in / Sign up

Export Citation Format

Share Document