Coarse-grained entropy in dynamical systems

Author(s):  
G. Piftankin ◽  
D. Treschev
2011 ◽  
Vol 11 (02n03) ◽  
pp. 569-591 ◽  
Author(s):  
HOONG CHIEH YEONG ◽  
JUN HYUN PARK ◽  
N. SRI NAMACHCHIVAYA

The study of random dynamical systems involves understanding the evolution of state variables that contain uncertainties and that are usually hidden, or not directly observable. Therefore, state variables have to be estimated and updated based on system models using information from observational data, which themselves are noisy, in the sense that they contain uncertainties and disturbances due to imperfections in observational devices and disturbances in the environment within which data are being collected. The development of efficient data assimilation methods for integrating observational data in predicting the evolution of random state variables is thus an important aspect in the study of random dynamical systems. In this paper, we consider a particle filtering approach to nonlinear filtering in multiscale dynamical systems. Particle filtering methods [1–3] utilizes ensembles of particles to represent the conditional density of state variables using particle positions, distributed over a sample space. The distribution of an ensemble of particles is updated using observational data to obtain the best representation of the conditional density of the state variables of interest. On the other hand, homogenization theory [4, 5], allows us to estimate the coarse-grained (slow) dynamics of a multiscale system on a larger timescale without having to explicitly study the fast variable evolution on a small timescale. The results of filter convergence presented in [6] shows the convergence of the filter of the actual state variable to a homogenized solution to the original multiscale system, and thus we develop a particle filtering scheme for multiscale random dynamical systems that utilizes this convergence result. This particle filtering method is called the Homogenized Hybird Particle Filter, and it incorporates a multiscale computation scheme, the Heterogeneous Multiscale Method developed in [7], with the novel branching particle filter described in [8–10]. By incorporating a multiscale scheme based on homogenization of the original system, estimation of the coarse-grained dynamics using observational data is performed over a larger timescale, thus resulting in computational time and cost reduction in terms of the evolution of the state variables as well as functional evaluations for the filtering aspect. We describe the theory behind this combined scheme and its general algorithm, concluded with an application to the Lorenz-96 [11] atmospheric model that mimics midlatitude geophysical dynamics with microscopic convective processes.


2009 ◽  
Vol 12 (02) ◽  
pp. 131-155 ◽  
Author(s):  
MARTIN NILSSON JACOBI ◽  
OLOF GÖRNERUP

We present a method for identifying coarse-grained dynamics through aggregation of variables or states in linear dynamical systems. The condition for aggregation is expressed as a permutation symmetry of a set of dual eigenvectors of the matrix that defines the dynamics. The applicability of the condition is illustrated in examples from three different generic classes of reducible Markov chains: systems consisting of independent subsystems, dynamics with symmetries, and nearly decoupled Markov chains. Furthermore we show how the method can be used to coarse-grain cellular automata.


2010 ◽  
Vol 13 (02) ◽  
pp. 199-215 ◽  
Author(s):  
OLOF GÖRNERUP ◽  
MARTIN NILSSON JACOBI

A central problem in the study of complex systems is to identify hierarchical and intertwined dynamics. A hierarchical level is defined as an aggregation of the system's variables such that the aggregation induces its own closed dynamics. In this paper, we present an algorithm that finds aggregations of linear dynamical systems, e.g. including Markov chains and diffusion processes on weighted and directed networks. The algorithm utilizes that a valid aggregation with n states correspond to a set of n eigenvectors of the dynamics matrix such that these respect the same permutation symmetry with n orbits. We exemplify the applicability of the algorithm by employing it to identify coarse grained representations of cellular automata.


2010 ◽  
Vol 15 (4-5) ◽  
pp. 575-597 ◽  
Author(s):  
G. Piftankin ◽  
D. Treschev

Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
J. M. Walsh ◽  
K. P. Gumz ◽  
J. C. Whittles ◽  
B. H. Kear

During a routine examination of the microstructure of rapidly solidified IN-100 powder, produced by a newly-developed centrifugal atomization process1, essentially two distinct types of microstructure were identified. When a high melt superheat is maintained during atomization, the powder particles are predominantly coarse-grained, equiaxed or columnar, with distinctly dendritic microstructures, Figs, la and 4a. On the other hand, when the melt superheat is reduced by increasing the heat flow to the disc of the rotary atomizer, the powder particles are predominantly microcrystalline in character, with typically one dendrite per grain, Figs, lb and 4b. In what follows, evidence is presented that strongly supports the view that the unusual microcrystalline structure has its origin in dendrite erosion occurring in a 'mushy zone' of dynamic solidification on the disc of the rotary atomizer.The critical observations were made on atomized material that had undergone 'splat-quenching' on previously solidified, chilled substrate particles.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Sign in / Sign up

Export Citation Format

Share Document