centrifugal atomization
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6700
Author(s):  
Jolanta Gawałek

Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.


2021 ◽  
Vol 1037 ◽  
pp. 111-118
Author(s):  
Konstantin M. Kolmakov ◽  
Alexander E. Zverovshchikov

The article shows the advantage of electric arc synthesis and subsequent centrifugal spraying of tungsten carbide to obtain a high-quality highly dispersed powder. A tungsten electrode (anode) is fed to the surface of a rotating graphite electrode (cathode) until an electric arc occurs between the electrodes, and the cathode is made in the form of a ring. The angular speed of rotation of the annular graphite electrode is set in accordance with the calculated ratio, which provides fine-dispersed centrifugal atomization of the molten product particles. To prevent intense evaporation of tungsten and the formation of an excessive amount of fine particles, the power of the electric arc for melting the anode is limited to a set value.As a result, the uniformity of the powder increases and the dispersion of the particles of the main fraction decreases.


Author(s):  
Vishnu Teja Mantripragada ◽  
Krishanu Kumar ◽  
Pankaj Kumar ◽  
Sabita Sarkar

2020 ◽  
Vol 59 (5-6) ◽  
pp. 239-248
Author(s):  
Wei Dong ◽  
Yao Meng ◽  
Fumin Xu ◽  
Yang Han ◽  
Yanyang Wang ◽  
...  

Author(s):  
Dejiang Liu ◽  
◽  
Yan Gong ◽  
Xiao Chen ◽  
Xiao Zhang ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 198
Author(s):  
Yan Yang ◽  
Nan Zheng ◽  
Xiaoyue Wang ◽  
Ryan Ivone ◽  
Weiguang Shan ◽  
...  

Granules with superior fluidity and low moisture absorption are ideal for tableting and capsule filling. Melt granulation as a solvent-free technology has attracted increasing interest for the granulation of moisture-sensitive drugs. The objective of the present study was to develop a solvent-less and high throughput melt granulation method via the melt centrifugal atomization (MCA) technique. The granule formability of various drugs and excipients via MCA and their dissolution properties were studied. It was found that the yield, fluidity, and moisture resistance of the granules were affected by the drug and excipient types, operation temperature, and collector diameter. The drugs were in an amorphous state in pure drug granules, or were highly dispersed in excipients as solid dispersions. The granules produced via MCA showed an improved drug dissolution. The present study demonstrated that the solvent-free, one-step, and high-throughput MCA approach can be used to produce spherical granules with superior fluidity and immediate drug release characteristics for poorly water-soluble and moisture-sensitive therapeutics.


2018 ◽  
Vol 777 ◽  
pp. 322-326
Author(s):  
Nipon Denmud ◽  
Thawatchai Plookphol

Centrifugal atomization apparatus was constructed to produce solder alloy powder with high quality. In this work, SAC305 alloy was atomized to study the effects of processing parameters, including atomizer disk surface condition and oxygen content in the atomizer chamber on the mean particle size, size distribution, production yield, and morphology of the produced SAC305 powder. The results showed that the atomizer disk surface coated with tin alloy gave the produced powder with smaller mean size, narrower size distribution and higher production yield, in comparison with the uncoated disk. This is due to a good wettability between the molten SAC305 and atomizer disk surface and the sufficient time for alloy droplets to be solidified. The shapes of SAC305 powder were sphere, teardrop, oval, and ligament, depending on the oxygen content in the atomizer chamber during atomization. The shape of produced powder was almost perfectly spherical when the oxygen content was decreased down to 0.5 vol.%. Moreover, with decreasing the oxygen content in the atomizer chamber, the produced SAC305 powder would contain oxygen content on its surface lower than 100 ppm.


Sign in / Sign up

Export Citation Format

Share Document