Title Analytical Study of Conjugated Heat Transfer of a Microchannel Fluid Flow between Two Parallel Plates

2020 ◽  
Vol 29 (1) ◽  
pp. 114-135
Author(s):  
A. S. Al-shyyab ◽  
F. H. Darwish ◽  
M. A. Al-Nimr ◽  
B. J. Alshaer
1978 ◽  
Vol 100 (2) ◽  
pp. 177-179 ◽  
Author(s):  
R. K. Shah

Laminar hydrodynamic entry length solutions for circular and noncircular ducts are essential in proper design of compact heat exchangers and other heat transfer and fluid flow devices. A closed form equation has been proposed to present these solutions for the circular tube, parallel plates, rectangular, equilateral triangular, and concentric annular ducts. The necessary constants are evaluated and it is shown that the proposed correlation predicts the apparent friction factors within ± 2.4 percent.


1999 ◽  
Vol 121 (3) ◽  
pp. 202-208 ◽  
Author(s):  
Y. Asako ◽  
Y. Yamaguchi ◽  
M. Faghri

Three-dimensional numerical analysis, for transitional characteristics of fluid flow and heat transfer in periodic fully developed region of an array of the heated square blocks deployed along one wall of the parallel plates duct, is carried out by using Lam-Bremhorst low-Reynolds-number two equation turbulence model. Computations were performed for Prandtl number of 0.7, in the Reynolds number range of 200 to 2000 and for two sets of geometric parameters characterizing the array. The predicted transitional Reynolds number is lower than the value for the parallel plate duct and it decreases with increasing the height above the module. Experiments were also performed for pressure drop measurements and for flow visualization and the results were compared with the numerical predictions.


2010 ◽  
Author(s):  
Simone Mancin ◽  
Claudio Zilio ◽  
Luisa Rossetto ◽  
Alberto Cavallini ◽  
Kambiz Vafai

Author(s):  
Sudip Shyam ◽  
Aparesh Datta ◽  
Ajoy Kumar Das

In this study, heat transfer and fluid flow of de-ionized water in two-dimensional parallel plates microchannel with and without micromixers have been investigated for various Reynolds numbers. The effects of heat transfer and fluid flow on height, diameter of micromixer, and also distance between the two micromixers are carried out in the study. Results showed that the diameter of the micromixer does not have much effect on heat transfer with a maximum enhancement of 9.5%. Whereas heat transfer gets enhanced by 85.57% when the height of the micromixer is increased from 100 μm to 400 μm, and also heat transfer gets improved by 11.45% when sb2 is increased from 4L to 5L. The separation and reattachment zone at the entry and exit of the micromixer cause the increase in heat transfer with the penalty of pressure drop. It is also found that increase of Reynolds number increases the intensity of the secondary flows leads to rapid increase in heat transfer and pressure drop. Finally, the optimized structure of micromixer is found out based on maximum heat transfer and minimum pressure drop.


Sign in / Sign up

Export Citation Format

Share Document