study heat transfer
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 2)

Author(s):  
Sathish Kumar D ◽  
Jayavel S

Abstract Miniaturization of electronic components requires compact and effective cooling techniques to dissipate large heat flux without significant increase in pumping power. Microchannel heat sink with liquid as working fluid is a suitable technique for the purpose. In the present study, heat transfer characteristics in presence of vertical bifurcation placed in the downstream of the microchannel passage is studied numerically. Six types of bifurcating plates are considered under two categories: (i) thick-plate and (ii) wavy thin-wall. Water is taken as the working fluid and the flow rate has been varied in the Reynolds number range, 100 = Re = 1000.The effect of bifurcations on pressure drop, heat transfer and the overall thermal resistance are analyzed and compared with those of plane microchannel without bifurcation. The numerical results show that the usage of bifurcation in the microchannel reduces the overall thermal resistance. Field synergy number, entropy generation number and hydro-thermal performance index are calculated to quantify the overall performance improvement in the microchannel with bifurcations. Constant wavy thin-wall bifurcation has been found to improve the overall performance of the microchannel. The detailed geometry of the bifurcation, the resulting convective heat transfer characteristics and percentage improvement in the performance are reported.


Author(s):  
I. Carlomagno ◽  
M. Di Domenico ◽  
A. Sellitto

We propose a theoretical model to study heat transfer at the nanoscale by means of high-order thermodynamic fluxes. The model is fully compatible with the model of heat transfer of extended irreversible thermodynamics, represents a generalization of the Guyer–Krumhansl proposal (Guyer & Krumhansl 1966 Phys. Rev. 148 ) and is able to deal with relaxational and non-local effects. It also accounts for the role played by the different heat carriers (electrons and/or lattice vibrations) and captures different heat-carrier temperatures. The proposed model is hyperbolic and is used to investigate the propagation of thermal waves.


Author(s):  
Ádám Sass ◽  
Alex Kummer ◽  
Zsolt Ulbert ◽  
Attila Egedy

Energy efficiency, safety and stable operation of units are the most crucial aspects in every industrial process. In this study, Computational Fluid Dynamics (CFD) simulations were used to study heat transfer in a laboratory-sized tubular heat exchanger. A partly 2D axisymmetric and mainly 3D model of the heat exchanger was created and validated with several simulation in different operating points of heating capacity and volume flow. The results of the simulations were compared to experimental data to validate the model. The inlet and outlet temperatures were measured with Pt100 temperature probes, and the surface temperatures were measured with an infrared camera. The heat transfer coefficient was determined based on the surface measurements The validated model was applied for the investigation of performance losses of heat exchanger due to fouling caused by particle deposits along the tube which caused reduced heat transfer surface or performance and a failure of heating wire which caused reduced heating performance, hence altered heat and flow characteristics through the equipment. The results provide useful information not only in the design processes but the operational lifetime as well.


2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Christoph Gramespacher ◽  
Holger Albiez ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract Formation mechanisms for turbine roughness are manifold, including erosion, corrosion, deposition, and spallation or more recently additive manufacturing processes. Consequently, the resulting surfaces differ remarkably not only in roughness shape, height, and density but also in element thermal conductivity. Because the roughness elements extend into the boundary layer, their temperature distribution has a direct influence on the thermal boundary layer and thus on the resulting convective heat transfer. In the current study, heat transfer distributions along a flat plate with more than 20 deterministic rough surface topographies that differ in element eccentricity, height and density are measured. For each surface roughness, measurements are conducted using two different element thermal conductivities (0.2 W/(mK) and 30 W/(mK)), two pressure distributions, four Reynolds numbers between 3 × 105 and 7.5 × 105 and various inlet turbulence intensities in the range of 1.5 % to 8 %. The pressure distributions resemble a typical suction and pressure side, respectively. Results show a heat transfer increase of up to 60 % for the high thermal conductivity surfaces and up to 50 % for the low conductivity ones. While heat transfer on the high conductivity surfaces is always higher than on the low conductivity ones, the difference becomes smaller with decreasing element density.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sidra Shaheen ◽  
K. Maqbool ◽  
Osman Anwar Beg ◽  
F. Gul

AbstractIn this study heat transfer effects on cilia induced mucus flow in human airways is presented. The elliptic wave pattern of cilia tips produces metachronal wave which enables the transportation of highly viscous mucus with nonzero inertial forces. Upper Convective Maxwell model is considered as mucus. The governing partial differential equations are transformed from the fixed frame to the wave frame by using Galilean transformation and viscous dissipation is also incorporated in the energy equation. The non-linear governing equations are evaluated by the perturbation technique by using software “MATHEMATICA” and pressure rise is computed by numerical integration. The impact of interested parameters on temperature profile, velocity, pressure rise and pressure gradient are plotted by the graphs. The comparison of velocities due to symplectic and antiplectic metachronal wave are also achieved graphically.


Author(s):  
Christoph Gramespacher ◽  
Holger Albiez ◽  
Mattias Stripf ◽  
Hans-Jörg Bauer

Abstract Formation mechanisms for turbine roughness are manifold, including erosion, corrosion, deposition, and spallation or more recently additive manufacturing processes. Consequently, the resulting surfaces differ remarkably not only in roughness shape, height, and density, but also in element thermal conductivity. Because the roughness elements extend into the boundary layer, their temperature distribution has a direct influence on the thermal boundary layer and thus on the resulting convective heat transfer. In the current study, heat transfer distributions along a flat plate with more than 20 deterministic rough surface topographies that differ in element eccentricity, height and density are measured. For each surface roughness, measurements are conducted using two different element thermal conductivities (0.2 W/(mK) and 30 W/(mK)), two pressure distributions, four Reynolds numbers between 3 × 105 and 7.5 × 105 and various inlet turbulence intensities in the range of 1.5% to 8%. The pressure distributions resemble a typical suction and pressure side, respectively. Results show a heat transfer increase of up to 60% for the high thermal conductivity surfaces and up to 50% for the low conductivity ones. While heat transfer on the high conductivity surfaces is always higher than on the low conductivity ones, the difference becomes smaller with decreasing element density.


2020 ◽  
Vol 330 ◽  
pp. 01053
Author(s):  
Rafael Deptulski ◽  
Rachid Bennacer ◽  
Gisele Vieira

The development of positive-energy buildings is nowadays an important societal challenge and the research objective of many laboratories. Working towards this direction, we describe in the present report the development of active and reactive walls, by employing a multi-fiber, volumetrically structured porous medium. Flow and transfer characterization in such a foam structure is not fully understood due to the strong nonlinearities included. These are amplified by heterogeneities and porosity changes, where the local and global flow affect the thermal field and the resulting heat transfer. Thus, a finite volume method with immersed structure interfaces was implemented to study heat transfer through these media, with the aim of obtaining their ratio equivalent to fluid thermal conductivity (i.e. Nusselt number). Furthermore, our analysis shows that in such active wall constituted by two solid phases, under fixed weight constraints, the optimal value is difficult to predict a priori. Thus, different evolution laws of thermal gradient were studied, resulting in the change of the pore size distribution along some new anisotropic structures, in order to achieve the most one predictive.


2019 ◽  
Vol 27 (04) ◽  
pp. 1950033 ◽  
Author(s):  
Nae-Hyun Kim

In this study, heat-transfer and friction characteristics of newly developed nonsymmetric slit-finned-tube heat exchangers are experimentally investigated. The newly developed slit fin had more slits in the second row than the first row. As a result, different row effect on [Formula: see text] factor than that of conventional enhanced finned-tube heat exchangers was observed. In other words, two-row configuration yielded larger [Formula: see text] factor than the one-row configuration. Comparison with conventional louver fin or slit fin heat exchangers revealed that the present slit fin heat exchangers show superior heat-transfer characteristics, especially at the second row. The reason was attributed to the many narrow slits that formed at the second row, which maintain thin water film along the slits and smooth the condensate flow.


2019 ◽  
Vol 97 (1) ◽  
pp. 23-29 ◽  
Author(s):  
E. Shivanian ◽  
M.R. Ansari ◽  
M. Shaban

In this study, heat transfer in a longitudinal rectangular fin with temperature-dependent thermal properties and internal heat generation is revisited. The advanced heat transfer models have been used to study the effects of thermo-geometric parameters, coefficient of heat transfer, and thermal conductivity parameters on the temperature distribution, heat transfer, and thermal performance of the longitudinal rectangular fin. It is shown that its governing nonlinear differential equation with proper boundary conditions is exactly solvable. With this aim, we reduce the order of the differential equation to first and then convert it into a total differential equation by multiplying by a convenient integrating factor. A full discussion and exact analytical solution in the implicit form is given for further physical interpretation and it is proved that three possible cases may occur: there is no solution to the problem, the solution is unique, or the solutions are dual, depending on the values of the parameters of the model.


Sign in / Sign up

Export Citation Format

Share Document