Numerical Analysis of Fluid Flow and Heat Transfer of Flow Between Parallel Plates Having Rectangular Shape Micromixer

Author(s):  
Sudip Shyam ◽  
Aparesh Datta ◽  
Ajoy Kumar Das

In this study, heat transfer and fluid flow of de-ionized water in two-dimensional parallel plates microchannel with and without micromixers have been investigated for various Reynolds numbers. The effects of heat transfer and fluid flow on height, diameter of micromixer, and also distance between the two micromixers are carried out in the study. Results showed that the diameter of the micromixer does not have much effect on heat transfer with a maximum enhancement of 9.5%. Whereas heat transfer gets enhanced by 85.57% when the height of the micromixer is increased from 100 μm to 400 μm, and also heat transfer gets improved by 11.45% when sb2 is increased from 4L to 5L. The separation and reattachment zone at the entry and exit of the micromixer cause the increase in heat transfer with the penalty of pressure drop. It is also found that increase of Reynolds number increases the intensity of the secondary flows leads to rapid increase in heat transfer and pressure drop. Finally, the optimized structure of micromixer is found out based on maximum heat transfer and minimum pressure drop.

2016 ◽  
Vol 37 (3) ◽  
pp. 45-62 ◽  
Author(s):  
Tomasz Muszyński ◽  
Sławomir Marcin Kozieł

Abstract Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


2015 ◽  
Vol 25 (8) ◽  
pp. 1978-1999 ◽  
Author(s):  
Kailash Mohapatra ◽  
Dipti Prasad Mishra

Purpose – The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions. Design/methodology/approach – Numerical investigation have been performed by solving the conservation equations of mass, momentum, energy with two equation-based k-eps model to determine the wall temperature, outlet temperature and Nusselt number of an internally finned tube. Findings – It has been found from the numerically investigation that there exists an optimum fin height and fin number for maximum heat transfer. It was also found that the heat transfer in T-shaped fin was highest compared to other shape. The saw type fins had a higher heat transfer rate compared to the plane rectangular fins having same surface area and the heat transfer rate was increasing with teeth number. Keeping the surface area constant, the shape of the duct was changed from cylindrical to other shape and it was found that the heat transfer was highest for frustum shape compared to other shape. Practical implications – The present computations could be used to predict the heat transfer and fluid flow characteristics of an internal finned tube specifically used in chemical and power plants. Originality/value – The original contribution of the paper was in the use of the two equation-based k-eps turbulent model to predict the maximum heat transfer through optimum design of fins and duct.


Author(s):  
M. Favre-Marinet ◽  
S. Le Person ◽  
A. Bejan

Experimental investigations of the flow and the associated heat transfer were conducted in two-dimensional microchannels in order to test possible size effects on the laws of hydrodynamics and heat transfer and to infer optimal conditions of use from the measurements. The test section was designed to modify easily the channel height e between 1 mm and 0.1 mm. Measurements of the overall friction factor and local Nusselt numbers show that the classical laws of hydrodynamics and heat transfer are verified for e > 0.4 mm. For lower values of e, a significant decrease of the Nusselt number is observed, whereas the Poiseuille number continues to have the conventional value of laminar developed flow. The transition to turbulence is not affected by the channel size. For fixed pressure drop across the channel, a maximum of heat transfer rate density is found for a particular value of e. The corresponding dimensionless optimal spacing and heat transfer rate density are in very good agreement with the predictions of Bejan and Sciubba (1992). This paper is the first time that the optimal spacing between parallel plates is determined experimentally.


Author(s):  
Limin Wang ◽  
Yufan Bu ◽  
Xun Chen ◽  
Xiaoyang Wei ◽  
Dechao Li ◽  
...  

In previous references, no study has been done on the optimization of rotary regenerative air preheaters (RAPHs) used in coal-fired power plants yet. The key structure parameters of RAPH include rotor radius, fluid section angles and matrix layer heights. In this study, work on the multi-objective design optimization of an RAPH was conducted by combing the thermal hydraulic calculation program which is developed to calculate the temperature and the pressure drop and the non-dominated sorting genetic algorithm (NSGA-II). The maximum heat transfer rate and the minimum friction, namely minimum outlet gas temperature and pressure drop, are considered as the conflicting objectives in the multi-optimization. The layer heights, rotor radius, angles of fluid sections and heights of matrix layers are involved in the design variables in the optimization. The optimization includes three cases in which the rotor radius upper limits are 7 m, 8 m and 9 m respectively. Sets of the Pareto-optimal front points were obtained for the different cases. The obtained optimal air-preheaters with larger upper limit of rotor radius would have better Pareto results. The optimum rotor radius is the upper limit value for different design range of rotor radius. The air-preheaters with larger upper design limit of rotor radius would have better Pareto results. In other words, if the upper design limit of rotor radius is too small, all the Pareto points in this case could not satisfy the performance requirements of heat transfer and friction, and the only way is to increase the upper design limit of rotor radius. The ratio of each optimum fluid section angle is determined by the fluid flow rate of each section.


2021 ◽  
Vol 409 ◽  
pp. 142-157
Author(s):  
Farouk Kebir ◽  
Youcef Attou

This study aimed to investigate numerically the heat transfer improvement and pressure drop inside annular channel of a rotor-stator provided with fins mounted on the stator without and with Taylor number. The impact of mounting various types of fins (triangular, rectangular, trapezoidal shapes with small and large base) is studied by varying the fin width b from 0 to 14 mm. In the presence of axial air flow, numerical simulations are carried out by solving the governing continuity, momentum and energy equations of turbulent flow in cylindrical coordinates using the Finite Volume Method. The results obtained by Reynolds Stress Model RSM model have indicated that the heat transfer enhances as the surface area of the fins and the effective Reynolds number increase, while there is an increase in pressure drop. Furthermore, we have shown that the presence of Taylor number has a slight increase in Nusselt number and pressure drop compared to the case without Taylor number. Among the four geometries, it is found that the rectangular cavity is the best geometry which gives maximum heat transfer and minimum pressure loss.


2006 ◽  
Vol 129 (7) ◽  
pp. 827-834 ◽  
Author(s):  
El Hassan Ridouane ◽  
Antonio Campo

This article addresses compound heat transfer enhancement for gaseous natural convection in closed enclosures; that is, the simultaneous use of two passive techniques to obtain heat transfer enhancement, which is greater than that produced by only one technique itself. The compounded heat transfer enhancement comes from two sources: (1) reshaping the bounded space and (2) the adequacy of the gas. The sizing of enclosures is of great interest in the miniaturization of electronic packaging that is severely constrained by space and∕or weight. The gases consist in a subset of binary gas mixtures formed with helium (He) as the primary gas. The secondary gases are nitrogen (N2), oxygen (O2), carbon dioxide (CO2), methane (CH4), and xenon (Xe). The steady-state flow is governed by a system of 2-D coupled mass, momentum, and energy conservation equations, in conjunction with the ideal gas equation of state. The set of partial differential equations is solved using the finite volume method, for a square and a right-angled isosceles triangular enclosure, accounting for the second-order accurate QUICK and SIMPLE schemes. The grid layouts rendered reliable velocities and temperatures for air and the five gas mixtures at high Ra=106, producing errors within 1% were 18,500 and 47,300 elements for the square and triangle enclosures, respectively. In terms of heat transfer enhancement, helium is better than air for the square and the isosceles triangle. It was found that the maximum heat transfer conditions are obtained filling the isosceles triangular enclosure with a He–Xe gas mixture. This gives a good trade-off between maximizing the heat transfer rate while reducing the enclosure space in half; the maximum enhancement of triangle∕square went up from 19% when filled with air into 46% when filled with He–Xe gas mixture at high Ra=106.


2011 ◽  
Vol 15 (2) ◽  
pp. 379-388
Author(s):  
Srinivas Bhatta ◽  
Seetharam Ramarao ◽  
Kankanhalli Seetharamuω

A three dimensional study of heat transfer from three heated blocks in a square channel at a Reynolds number of 108 with height of the chip assembly as the characteristic length is presented. Heated blocks affixed to the bottom plate represent electronic chips mounted on horizontal circuit board. A hexahedron block is affixed on to the top shrouding wall over the heated section. Thickness of this block is varied to study the effect on heat transfer from the chip assembly. A block of thickness equal to the passage between substrates produces maximum heat transfer enhancement. A block over the first passage enhances heat transfer from both immediate upstream and downstream chips considerably. A block over each recirculation zone produces moderate heat transfer from all the chips for a moderate pressure-drop. It is also observed that addition of blocks in the top plate does not add much to the pressure-drop in the duct.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Yijin Mao ◽  
Yuwen Zhang ◽  
C. L. Chen

A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier–Stokes equations for continuum domain are solved through the pressure implicit with splitting of operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that the heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.


Author(s):  
Tunde Bello-Ochende ◽  
Josua P. Meyer ◽  
Oluseun I. Ogunronbi

A steady-state two dimensional numerical simulation was carried out to optimize the heat transfer rate density from cylinders under different conditions. The geometric design of the cylinders was varied in two ways. In the first case the cylinders are located on a plane where their leading edges are aligned, and in the second case the cylinders are aligned on a plane which passes through their respective centre-lines. The rotation of the cylinders is within the range of 0 ≤ ω˜ ≤ 1, and the dimensionless pressure drop number, Be, which drives the flow is in the range of 10 ≤ Be ≤ 104. The continuity, momentum and energy equations describing the flow of the coolant, across the cylinders in the computational domain are performed using a computational fluid dynamics code, the results obtained were validated by comparing it with past results in the open literature for stationary cylinders. The effects of the various parameters (dimensionless pressure drop number, rotation) on the maximum heat transfer rate density from the cylinders in terms of augmentation and the suppression were analysed and reported.


Sign in / Sign up

Export Citation Format

Share Document