On the variability of the crystal lattice of quartz

1947 ◽  
Vol 12 ◽  
pp. 193-197
Author(s):  
J. Novák
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syed Kamran Haider ◽  
Hieu Minh Ngo ◽  
Dongsoo Kim ◽  
Young Soo Kang

AbstractSmCo5 and SmCo5−xCux magnetic particles were produced by co-precipitation followed by reduction diffusion. HRTEM confirmed the Cu substitution in the SmCo5 lattice. Non-magnetic Cu was substituted at “2c” site in the SmCo5 crystal lattice and effectively stopped the coupling in its surroundings. This decoupling effect decreased magnetic moment from SmCo5 (12.86 μB) to SmCo4Cu (10.58 μB) and SmCo3Cu2 (7.79 μB) and enhanced anisotropy energy from SmCo5 (10.87 Mega erg/cm3) to SmCo4Cu (14.05 Mega erg/cm3) and SmCo3Cu2 (14.78 Mega erg/cm3). Enhancement of the anisotropy energy increased the coercivity as its values for SmCo5, SmCo4Cu and SmCo3Cu2 were recorded as 4.5, 5.97 and 6.99 kOe respectively. Being six times cheaper as compared to Co, substituted Cu reduced the price of SmCo3Cu2 up to 2%. Extra 15% Co was added which not only enhanced the Mr value but also reduced the 5% of the total cost because of additional weight added to the SmCo3Cu2. Method reported in this work is most energy efficient method on the synthesis of Sm–Co–Cu ternary alloys until now.


2021 ◽  
Author(s):  
Ruiming Lu ◽  
Alan Olvera ◽  
Trevor Bailey ◽  
Jiefei Fu ◽  
Xianli Su ◽  
...  

The integration within the same crystal lattice of two or more structurally and chemically distinct building units enables the design of complex materials featuring the coexistence of dissimilar functionalities. Here...


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Jānis Bajārs ◽  
J. Chris Eilbeck ◽  
Benedict Leimkuhler

Sign in / Sign up

Export Citation Format

Share Document