Fractionation and molecular weight determination of poly(ethylene glycol methacrylate)

1968 ◽  
Vol 33 (12) ◽  
pp. 4104-4110 ◽  
Author(s):  
M. Bohdanecký ◽  
Z. Tuzar ◽  
M. Štoll ◽  
R. Chromeček
RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7249-7259 ◽  
Author(s):  
J. Cardoso ◽  
A. Mayrén ◽  
I. C. Romero-Ibarra ◽  
D. P. Nava ◽  
J. Vazquez-Arenas

Novel poly(poly(ethylenglycol)methacrylate) nanocomposite electrolytes based on montmorillonite and zeolite; and functionalized with LiTFSI and PYR11TFSI are synthetized for Li-ion batteries.


2007 ◽  
Vol 208 (24) ◽  
pp. 2642-2653 ◽  
Author(s):  
Alena Braunová ◽  
Michal Pechar ◽  
Richard Laga ◽  
Karel Ulbrich

2012 ◽  
Vol 567 ◽  
pp. 123-126
Author(s):  
Teng Fei Shen ◽  
Man Geng Lu ◽  
Li Yan Liang

In this work, microporous membrane biomaterials based on high weight molecular polylactide (PLA) and low molecular weight poly(ethylene glycol) (PEG) using rapid solvent evaporation method were prepared and investigated. The effect of PEG segments added on the thermal and degradation behaviors was studied. According to the results, produced PLA/PEG biomaterial has lower glass transition temperature (Tg)in comparison with neat PLA. It was also found that the degradation rates of the PLA/PEG biomaterials were significantly increased with adding of PEG, which explained by increasing hydrophilic groups. For better porous fixation, CL-blocked polyisocyanate (CL-bp), which was synthesized from reaction of isophorone diisocyanate (IPDI) with dimethylol propionic acid (DMPA) and Trimethylolpropane (TMP) followed by addition of caprolactam (CL), were introduced. The microporous forms were observed by the scanning electron microscope (SEM), which showed the mean diameters of prepared PLA/PEG microporous were around 10μm.


Sign in / Sign up

Export Citation Format

Share Document