polymeric membrane
Recently Published Documents


TOTAL DOCUMENTS

963
(FIVE YEARS 213)

H-INDEX

56
(FIVE YEARS 8)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 444
Author(s):  
Aritro Banerjee ◽  
Rajnish Kaur Calay ◽  
Fasil Ejigu Eregno

Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly. The principle of MFC is the same as hydrogen fuel cell and has three main components (i.e., anode, cathode, and proton exchange membrane). The membrane separates the anode and cathode chambers and keeps the anaerobic and aerobic conditions in the two chambers, respectively. This review paper describes the state-of-the-art membrane materials particularly suited for MFC and discusses the recent development to obtain robust, sustainable, and cost-effective membranes. Nafion 117, Flemion, and Hyflon are the typical commercially available membranes used in MFC. Use of non-fluorinated polymeric membrane materials such as sulfonated silicon dioxide (S-SiO2) in sulfonated polystyrene ethylene butylene polystyrene (SSEBS), sulfonated polyether ether ketone (SPEEK) and graphene oxide sulfonated polyether ether ketone (GO/SPEEK) membranes showed promising output and proved to be an alternative material to Nafion 117. There are many challenges to selecting a suitable membrane for a scaled-up MFC system so that the technology become technically and economically viable.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Farahdila Kadirkhan ◽  
Pei Sean Goh ◽  
Ahmad Fauzi Ismail ◽  
Wan Nurul Ffazida Wan Mustapa ◽  
Mohd Hanif Mohamad Halim ◽  
...  

Membranes are a promising technology for bulk CO2 separation from natural gas mixtures due to their numerous advantages. Despite the numerous fundamental studies on creating better quality membrane efficiency, scaling up the research work for field testing requires huge efforts. The challenge is to ensure the stability of the membrane throughout the operation while maintaining its high performance. This review addresses the key challenges in the application of polymeric technology for CO2 separation, focusing on plasticization and aging. A brief introduction to the properties and limitations of the current commercial polymeric membrane is first deliberated. The effect of each plasticizer component in natural gas towards membrane performance and the relationship between operating conditions and the membrane efficiency are discussed in this review. The recent technological advancements and techniques to overcome the plasticization and aging issues covering polymer modification, high free-volume polymers, polymer blending and facilitated transport membranes (FTMs) have been highlighted. We also give our perspectives on a few main features of research related to polymeric membranes and the way forwards. Upcoming research must emphasize mixed gas with CO2 including minor condensable contaminants as per real natural gas, to determine the competitive sorption effect on CO2 permeability and membrane selectivity. The effects of pore blocking, plasticization and aging should be given particular attention to cater for large-scale applications.


2022 ◽  
Vol 960 (1) ◽  
pp. 012002
Author(s):  
I G Bratu ◽  
R F Ene ◽  
M Vulpe ◽  
F Uleanu ◽  
D Giosanu

Abstract The performance of PEM fuel cells is influenced by several factors such as: the operating temperature of the cell, the reactant gas flow, work pressures, the reaction gas humidity. In the present work we aimed to identify the optimal values of these parameters for operation of a PEM cell to achieve maximum power in conditions of high efficiency; the technological possibilities of its use in a portable energy application have been evaluated. Experimental measurements regarding the integrating polymeric membrane in three different fuel cell construction designed were performed. The influence of the mechanical compression of the GDL diffusion layer on the total internal resistance of the cell was achieved by comparative analysis of the polarization curves. It was found that as the deformation level of the MEA increases, the power generated by the battery increases progressively. The resulting experimental data subsequently allowed the design and implementation of a PEM fuel cell assembly, fully functional at power level, corresponding to the number of constituent elements.


2022 ◽  
pp. 325-340
Author(s):  
Brent A. Bishop ◽  
Oishi Sanyal ◽  
Fernando V. Lima

Author(s):  
Mohan Chandra ◽  
Kumar Vinod

Ion-selective electrodes (ISEs) are potentiometric sensors used to measure some of the most critical analytes in environmental laboratory. Recently ion sensors are taking place of various analytical techniques, as they provide a convenient and fast method of electroanalysis. Ion-selective electrodes are simple, relatively inexpensive, robust, durable, and ideal to be used for the detection of heavy metal ions. Important characterisctics of ISEs are selectivity, response time, detection limit, working range, effect of pH etc. Lot of research work is being done for the formation of ISEs by using polymeric membrane incorporated with ionophores or electroactive material. Various types of Schiff bases, macromolecules and metal complexes may be used as ionophores along with plasticizer, ion-excluder for the membrane preparation. Ion-selective electrodes will be optimized for pH range, selectivity, sensitivity, working concentration range and lifetime before their use as sensor electrode for determining the concentration of ions in solution. Various researchers are working in the field to develop Ion-selective electrodes which shows better selectivity and sensitivity than the previously reported electrodes and can be used as electrocatalysts. These ISEs can be used as electrochemical sensors for the analysis of food products, drinking water, beverages, fertilizers, and for the analysis of sample containing toxic substances.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 959
Author(s):  
Chunxian Liao ◽  
Lijie Zhong ◽  
Yitian Tang ◽  
Zhonghui Sun ◽  
Kanglong Lin ◽  
...  

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl− with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl−, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl− sensor was fabricated for on-body monitoring the concentration of sweat Cl− to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.


2021 ◽  
Author(s):  
Ravi Kumar Cheedarala ◽  
Jung Il Song

Abstract The development of highly durable, stretchable, and steady triboelectric nanogenerators (TENGs) is highly desirable to satisfy the tight requirement of energy demand. Here, we presented a novel integrated polymeric membrane that is designed by PEDOT:PSSa-naphthalene sulfonated polyimide (PPNSP)-EMI. BF4 Electronic skin (e-skin) for potential TENG applications. The proposed TENG e-skin is fabricated by an interconnected architecture with push-pull 3D ionic electrets that can threshold the transfer of charges through an ion-hopping mechanism for the generation of a higher output voltage (Voc) and currents (Jsc) against an electronegative PTFE film. PPNSP was synthesized from the condensation of naphthalene-tetracarboxylic dianhydride, 2, 2’-benzidine sulfonic acid, and 4,4’diaminodiphenyl ether through an addition copolymerization protocol, and PEDOT:PSSa was subsequently deposited using the dip-coating method. Porous networked PPNSP e-skin with continuous ion transport nano-channels is synthesized by introducing simple and strong molecular push-pull 3D interactions via intrinsic ions. In addition, EMI. BF4 ionic liquid (IL) is doped inside the PPNSP skin to interexchange ions to enhance the potential window for higher output Voc and Iscs. In this article, we investigated the push-pull dynamic interactions between PPNSP-EMI.BF4 e-skin and PTFE and tolerable output performance. The novel PPNSP- EMI.BF4 e-skin TENG produced upto 49.1 V and 1.03 µA at 1 Hz, 74 V and 1.45 µA at 2 Hz, 122.3 V and 2.21 µA at 3 Hz and 171 V and 3.6 µA at 4 Hz, and 195 V and 4.43 µA at 5 Hz, respectively. The proposed novel TENG device was shown to be highly flexible, highly durable, commercially viable, and a prospective candidate to produce higher electrical charge outputs at various applied frequencies.


Sign in / Sign up

Export Citation Format

Share Document