Theory of polarography with elimination of some currents

1986 ◽  
Vol 51 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Oldřich Dračka

A method for the elimination of various components of the polarographic current is proposed, based on its differentiation and/or integration with respect to time forming a linear combination of the results with the original current. A linear combination of n different functions can be used to eliminate n - 1 current components. Examples for the elimination of the charging, diffusion, and kinetic current are given, and the possibilities of realization and utilization of the new method are discussed.

SIMULATION ◽  
1968 ◽  
Vol 10 (5) ◽  
pp. 221-223 ◽  
Author(s):  
A.S. Chai

It is possible to replace k2 in a 4th-order Runge-Kutta for mula (also Nth-order 3 ≤ N ≤ 5) by a linear combination of k1 and the ki's in the last step, using the same procedure for computing the other ki's and y as in the standard R-K method. The advantages of the new method are: It re quires one less derivative evaluation, provides an error estimate at each step, gives more accurate results, and needs a minor change to switch to the RK to obtain the starting values. Experimental results are shown in verification of the for mula.


1982 ◽  
Vol 104 (3) ◽  
pp. 432-437 ◽  
Author(s):  
R. Manohar ◽  
J. W. Stephenson

A new method is proposed for obtaining finite difference equations for the solution of linear partial differential equations. The method is based on representing the approximate solution locally on a mesh element by polynomials which satisfy the differential equation. Then, by collocation, the value of the approximate solution, and its derivatives at the center of the mesh element may be expressed as a linear combination of neighbouring values of the solution.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 636
Author(s):  
Xia Tang ◽  
Chun Wen ◽  
Xian-Ming Gu ◽  
Zhao-Li Shen

Anderson(m0) extrapolation, an accelerator to a fixed-point iteration, stores m0+1 prior evaluations of the fixed-point iteration and computes a linear combination of those evaluations as a new iteration. The computational cost of the Anderson(m0) acceleration becomes expensive with the parameter m0 increasing, thus m0 is a common choice in most practice. In this paper, with the aim of improving the computations of PageRank problems, a new method was developed by applying Anderson(1) extrapolation at periodic intervals within the Arnoldi-Inout method. The new method is called the AIOA method. Convergence analysis of the AIOA method is discussed in detail. Numerical results on several PageRank problems are presented to illustrate the effectiveness of our proposed method.


Author(s):  
PATRICK S. P. WANG

This paper is aimed at 3D object understanding from 2D images, including articulated objects in active vision environment, using interactive, and internet virtual reality techniques. Generally speaking, an articulated object can be divided into two portions: main rigid portion and articulated portion. It is more complicated that "rigid" object in that the relative positions, shapes or angles between the main portion and the articulated portion have essentially infinite variations, in addition to the infinite variations of each individual rigid portions due to orientations, rotations and topological transformations. A new method generalized from linear combination is employed to investigate such problems. It uses very few learning samples, and can describe, understand, and recognize 3D articulated objects while the objects status is being changed in an active vision environment.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


1960 ◽  
Vol 23 ◽  
pp. 227-232 ◽  
Author(s):  
P WEST ◽  
G LYLES
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document