Electrode kinetics of the system V(III)/V(II) in aqueous dimethylsulphoxide

1991 ◽  
Vol 56 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Libuše Kišová ◽  
Libor Reichstädter ◽  
Jaro Komenda

The rate constants for the reduction of V(III) and oxidation of V(II) were measured on a mercury electrode in water and water-dimethylsulphoxide mixtures. Their dependance on the concentration of DMSO differs from that in mixtures of water with an organic solvent of lower basicity. This can be attributed to the existence of different solvates of vanadium in solutions and to different values of the rate constant for these solvates on the electrode surface at different coverages with the organic component. The influence of DMSO both in the primary solvation sphere and in the electrode double layer on the electrode reaction rate is discussed.

1994 ◽  
Vol 59 (6) ◽  
pp. 1279-1286 ◽  
Author(s):  
Libuše Kišová ◽  
Šárka Šotková ◽  
Ivana Komendová

The electron transfer rate constants in the reduction of Ti4+ and oxidation of Ti3+ in water and in water DMF and water DMSO mixtures were determined by square-wave polarography and by analysis of the DC and pulse polarographic curves. The two reactions occur at different potentials due to the rapid consecutive transformation of the primary product of the electrode reaction. Thus the rate constants are no standard rate constants, and depend on the method employed. The effect of the organic co-solvent varies for both reactions as a consequence of dependence of the degree of electrode coverage on potential. Generally, the adsorbed organic substance exerts an accelerating catalytic effect.


1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


Author(s):  
S.M. Asadov ◽  

This article is devoted to modeling the kinetics of colloidal crystallization of cadmium selenide (CdSe) nanoparticles (NPs). The kinetic equation is modified, considering the contributions of the reaction rate constants of individual stages. It includes the reaction rate constants, thermodynamic and calculated parameters, and physical properties. There is used modified kinetic model based on the crystallization equation. There are considered the contributions of adsorption, desorption, and migration of nucleated particles at different times. Modified model assumes that, upon crystallization of NPs CdSe, monomer units depend on the frequency of attachment and detachment transitions of the monomer–CdSe complex. In this case, the transformation of the precursor into a monomer, the formation of an effective monomer and nucleation pass into the growth stage of (NC CdSe) nanocrystals with a seeded mass. In the process, the resulting nanocluster will continue to grow due to early maturation, aging, and subsequent growth into larger NC CdSe. The Kinetic Monte Carlo method (KMC) is used to approximate the model of the nucleation–growth of NC considering different contributions to the reaction rate constants. The modified model with the use of KMC allows to describe the dependences of the kinetic rate constants on the average radius of nanoparticles as a function of time, concentration, and distribution of NC CdSe at a given time. There are described conditions for the formation of NPs CdSe with an evolutionary distribution function of NC CdSe in size space. The results of modeling the kinetics of colloidal crystallization of CdSe can be used to control nucleation rate and growth of NPs CdSe, as well as similar systems in the formation of high-quality NC.


1955 ◽  
Vol 8 (3) ◽  
pp. 322 ◽  
Author(s):  
B Breyer ◽  
HH Bauer ◽  
S Hacobian

The equation of the A.C. polarographic current for processes where the frequency of the alternating field is comparable with the rate of the electrode reaction is derived. Relative values of equilibrium rate constants of some first order electrode reactions are evaluated experimentally.


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.


Sign in / Sign up

Export Citation Format

Share Document