Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease

2021 ◽  
pp. annrheumdis-2021-220493
Author(s):  
Seung Min Jung ◽  
Kyung-Su Park ◽  
Ki-Jo Kim

ObjectivesInterstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module.MethodsA transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD.ResultsSSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module.ConclusionsIntegrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.

Author(s):  
Biqing Huang ◽  
Jing Li ◽  
Jiuliang Zhao

Objectives: This study aims to analyze gene expression in lung tissue and lung fibroblasts of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) to identify potential biomarkers and therapeutic targets and to examine its possible role in the pathogenesis of SSc-ILD. Patients and methods: We obtained datasets from Gene Expression Omnibus (GEO) database, and used Robust Rank Aggregation to calculate the co-expressed differentially-expressed-genes (DEGs) in three chips, then analyzed the function, signaling pathways and the protein-protein interaction network of the DEGs. Finally, we verified the DEGs related to SSc-ILD by three databases of Comparative Toxicogenomics Database (CTD), GENE, and DisGeNET, respectively. Results: There were 16 co-expressed DEGs related to SSc-ILD in three GEO series, of which six genes were upregulated, and 10 genes were downregulated. The CTD included 29,936 genes related to SSc, and the GENE and DisGeNET databases had 429 genes related to SSc. Conclusion: The results of gene differential expression analysis suggest that interleukin-6, chemokine ligand 2, intercellular adhesion molecule 1, tumor necrosis factor alpha-induced protein 3, pentraxin 3, and cartilage oligomeric matrix protein may be implicated in the pathogenesis of SSc-ILD and are expected to be potential biomarkers and therapeutic targets for SSc-ILD.


2019 ◽  
Vol 15 (10) ◽  
pp. 1009-1017 ◽  
Author(s):  
Oliver Distler ◽  
Elizabeth R. Volkmann ◽  
Anna Maria Hoffmann-Vold ◽  
Toby M. Maher

2019 ◽  
Vol 380 (26) ◽  
pp. 2518-2528 ◽  
Author(s):  
Oliver Distler ◽  
Kristin B. Highland ◽  
Martina Gahlemann ◽  
Arata Azuma ◽  
Aryeh Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document