lung fibroblasts
Recently Published Documents





Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Javier Pérez Quiñones ◽  
Cornelia Roschger ◽  
Aitziber Iturmendi ◽  
Helena Henke ◽  
Andreas Zierer ◽  

The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2–13.6 wt% of CPT and 0.3–2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140–200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80–100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 hours in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 hours. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 hours. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.

Biology Open ◽  
2022 ◽  
Kerry C. Roby ◽  
Allyson Lieberman ◽  
Bang-Jin Kim ◽  
Nicole Zaragoza Rodríguez ◽  
Jessica M. Posimo ◽  

Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation. Here we show that prolonged leucine deprivation resulted in increased expression and nuclear localization of p19Arf, triggering apoptosis in primary murine adult lung fibroblasts (ALFs). In contrast, the absence of p19Arf during long-term leucine deprivation resulted in increased ALF proliferation, migration and survival through upregulation of the Integrated Stress Response pathway and increased autophagic flux. Our data implicates a new role for p19Arf in response to nutrient deprivation.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Tillie-Louise Hackett ◽  
Noamie R. T. F. Vriesde ◽  
May AL-Fouadi ◽  
Leila Mostaco-Guidolin ◽  
Delaram Maftoun ◽  

The extracellular matrix (ECM) supports lung tissue architecture and physiology by providing mechanical stability and elastic recoil. Over the last several decades, it has become increasingly clear that the stiffness of the ECM governs many cellular processes, including cell-phenotype and functions during development, healing, and disease. Of all the lung ECM proteins, collagen-I is the most abundant and provides tensile strength. In many fibrotic lung diseases, the expression of collagen is increased which affects the stiffness of the surrounding environment. The goal of this study was to assess the effect on fibroblast morphology, cell death, and inflammation when exposed to 2D and 3D low (0.4 mg/mL) versus high (2.0 mg/mL) collagen-I-matrix environments that model the mechanics of the breathing lung. This study demonstrates that human fetal lung fibroblasts (HFL1), grown in a 3D collagen type-I environment compared to a 2D one, do not form cells with a myofibroblast morphology, express less F-actin stress fibers, exhibit less cell death, and significantly produce less pro-inflammatory IL-6 and IL-8 cytokines. Exposure to mechanical strain to mimic breathing (0.2 Hz) led to the loss of HFL1 fibroblast dendritic extensions as well as F-actin stress fibers within the cell cytoskeleton, but did not influence cytokine production or cell death. This dynamic assay gives researchers the ability to consider the assessment of the mechanodynamic nature of the lung ECM environment in disease-relevant models and the potential of mechano-pharmacology to identify therapeutic targets for treatment.

2022 ◽  
Farida Ahangari ◽  
Christine Becker ◽  
Daniel G Foster ◽  
Maurizio Chioccioli ◽  
Meghan Nelson ◽  

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two FDA approved anti-fibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Using an in-silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor, originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. We investigated the anti-fibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: (i) in vitro in normal human lung fibroblasts (NHLFs); (ii) in vivo in bleomycin and recombinant adenovirus transforming growth factor-beta (Ad-TGF-β) murine models of pulmonary fibrosis; and (iii) ex vivo in precision cut lung slices from these mouse models. In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone.

Jeffrey D. Ritzenthaler ◽  
Edilson Torres-Gonzalez ◽  
Yuxuan Zheng ◽  
Igor N. Zelko ◽  
Victor Van Berkel ◽  

Increased senescence and expression of pro-fibrotic genes in old lung fibroblasts contribute to disrepair responses. We reported that primary lung fibroblasts from old mice have lower expression and activity of the cystine transporter Slc7a11/xCT than cells from young mice, resulting in changes in both the intracellular and extracellular redox environments. This study examines the hypothesis that low Slc7a11 expression in old lung fibroblasts promotes senescence and pro-fibrotic gene expression. The levels of mRNA and protein of Slc7a11, senescence markers, and pro-fibrotic genes were measured in primary fibroblasts from the lungs of old (24 months) and young (3 months) mice. In addition, the effects of genetic and pharmacological manipulation of Slc7a11 were investigated. We found that decreased expression of Slc7a11 in old cells was associated with elevated markers of senescence (p21, p16, p53 and b-galactosidase) and increased expression of pro-fibrotic genes (Tgfb1, Smad3, Acta2, Fn1, Col1a1 and Col5a1). Silencing of Slc7a11 in young cells replicated the aging phenotype, whereas overexpression of Slc7a11 in old cells decreased expression of senescence and pro-fibrotic genes. Young cells were induced to express the senescence and pro-fibrotic phenotype by sulfasalazine, an Slc7a11 inhibitor, whereas treatment of old cells with sulforaphane, an Slc7a11 inducer, decreased senescence without affecting pro-fibrotic genes. Like aging cells, idiopathic pulmonary fibrosis fibroblasts show decreased Slc7a11 expression and increased pro-fibrotic markers. In short, old lung fibroblasts manifest a pro-fibrotic and senescence phenotype that is modulated by genetic or pharmacological manipulation of Slc7a11.

Ashley Rose Rackow ◽  
Jennifer L Judge ◽  
Collynn F Woller ◽  
Patricia J. Sime ◽  
Robert Matthew Kottmann

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease. The pathogenesis of IPF is not completely understood. However, numerous genes are associated with the development and progression of pulmonary fibrosis, indicating there is a significant genetic component to the pathogenesis of IPF. Epigenetic influences on the development of human disease, including pulmonary fibrosis, remain to be fully elucidated. In this paper we identify miR-338-3p as a microRNA severely downregulated in the lungs of patients with pulmonary fibrosis and in experimental models of pulmonary fibrosis. Treatment of primary human lung fibroblasts with miR-338-3p inhibits myofibroblast differentiation and matrix protein production. Published and proposed targets of miR-338-3p such as TGFβ receptor 1, MEK/ERK 1/2, Cdk4 and Cyclin D are also not responsible for the regulation of pulmonary fibroblast behavior by miR-338-3p. miR-338-3p inhibits myofibroblast differentiation by preventing TGFβ-mediated downregulation of phosphatase and tensin homolog (PTEN), a known anti-fibrotic mediator.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0254466
Ting-Yun Chen ◽  
Xiaoyun Li ◽  
Gillian C. Goobie ◽  
Ching-Hsia Hung ◽  
Tin-Kan Hung ◽  

Relaxin/insulin-like family peptide receptor 1 (RXFP1) mediates relaxin’s antifibrotic effects and has reduced expression in the lung and skin of patients with fibrotic interstitial lung disease (fILD) including idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). This may explain the failure of relaxin-based anti-fibrotic treatments in SSc, but the regulatory mechanisms controlling RXFP1 expression remain largely unknown. This study aimed to identify regulatory elements of RXFP1 that may function differentially in fibrotic fibroblasts. We identified and evaluated a distal regulatory region of RXFP1 in lung fibroblasts using a luciferase reporter system. Using serial deletions, an enhancer upregulating pGL3-promoter activity was localized to the distal region between -584 to -242bp from the distal transcription start site (TSS). This enhancer exhibited reduced activity in IPF and SSc lung fibroblasts. Bioinformatic analysis identified two clusters of activator protein 1 (AP-1) transcription factor binding sites within the enhancer. Site-directed mutagenesis of the binding sites confirmed that only one cluster reduced activity (-358 to -353 relative to distal TSS). Co-expression of FOS in lung fibroblasts further increased enhancer activity. In vitro complex formation with a labeled probe spanning the functional AP-1 site using nuclear proteins isolated from lung fibroblasts confirmed a specific DNA/protein complex formation. Application of antibodies against JUN and FOS resulted in the complex alteration, while antibodies to JUNB and FOSL1 did not. Analysis of AP-1 binding in 5 pairs of control and IPF lung fibroblasts detected positive binding more frequently in control fibroblasts. Expression of JUN and FOS was reduced and correlated positively with RXFP1 expression in IPF lungs. In conclusion, we identified a distal enhancer of RXFP1 with differential activity in fibrotic lung fibroblasts involving AP-1 transcription factors. Our study provides insight into RXFP1 downregulation in fILD and may support efforts to reevaluate relaxin-based therapeutics alongside upregulation of RXFP1 transcription.

2021 ◽  
Ji Zhang ◽  
Yi Hu ◽  
Huiping Huang ◽  
Qun Liu ◽  
Yang Du ◽  

Abstract Fibroblast-to-myofibroblast transdifferentiation and myofibroblast hyperproliferation play a major role in Idiopathic pulmonary fibrosis (IPF). It was also reported that mTOR signaling pathway and SIRT6 have a critical role in pulmonary fibrosis. However, the mechanisms whether mTOR signaling pathway and SIRT6 affect the myofibroblasts differentiation in IPF remain unclear. The results show that SIRT6 is significantly upregulated by TGF-β1 with a time and concentration-dependent manner in MRC5 line and primary lung fibroblasts isolated from IPF patients. SIRT6 protein is also increased in IPF fibrotic lung tissues and bleomycin-challenged mice lung tissues. Also, the activity of mTOR signaling is activated in MRC5 and primary lung fibroblasts. Furthermore, the inhibitor of mTOR, rapamycin treatment significantly suppress mTORC1 pathway activity and SIRT6 protein expression. SIRT6 siRNA failed to mediate the activity of mTORC1 pathway and autophagy induction. Finally, deficiency of SIRT6 could promote TGF-β1 induced pro-fibrotic cytokines. In summary, the study have suggested that SIRT6 is a downstream of mTORC1 signaling pathway in the pulmonary fibrosis caused by TGF-β1-induced. Deficiency of SIRT6 mediated myofibroblasts differentiation through induced pro-fibrotic cytokines production but not induced-autophagy. It was indicated that manipulations of SIRT6 expression may provide a new therapeutic strategy to reverse the progression of pulmonary fibrosis.

2021 ◽  
Vol 12 ◽  
Menglin Zou ◽  
Jingfeng Zou ◽  
Xingxing Hu ◽  
Weishuai Zheng ◽  
Mingyang Zhang ◽  

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. The aberrantly activated lung myofibroblasts, predominantly emerging through fibroblast-to-myofibroblast differentiation, are considered to be the key cells in PF, resulting in excessive accumulation of extracellular matrix (ECM). Latent transforming growth factor-β (TGFβ) binding protein-2 (LTBP2) has been suggested as playing a critical role in modulating the structural integrity of the ECM. However, its function in PF remains unclear. Here, we demonstrated that lungs originating from different types of patients with PF, including idiopathic PF and rheumatoid arthritis-associated interstitial lung disease, and from mice following bleomycin (BLM)-induced PF were characterized by increased LTBP2 expression in activated lung fibroblasts/myofibroblasts. Moreover, serum LTBP2 was also elevated in patients with COVID-19-related PF. LTBP2 silencing by lentiviral shRNA transfection protected against BLM-induced PF and suppressed fibroblast-to-myofibroblast differentiation in vivo and in vitro. More importantly, LTBP2 overexpression was able to induce differentiation of lung fibroblasts to myofibroblasts in vitro, even in the absence of TGFβ1. By further mechanistic analysis, we demonstrated that LTBP2 silencing prevented fibroblast-to-myofibroblast differentiation and subsequent PF by suppressing the phosphorylation and nuclear translocation of NF-κB signaling. LTBP2 overexpression-induced fibroblast-to-myofibroblast differentiation depended on the activation of NF-κB signaling in vitro. Therefore, our data indicate that intervention to silence LTBP2 may represent a promising therapy for PF.

2021 ◽  
Maurizio Chioccioli ◽  
Subhadeep Roy ◽  
Kevin Rigby ◽  
Rachel Newell ◽  
Oliver Dansereau ◽  

AbstractmicroRNAs are non-coding RNAs that negatively regulate gene networks. Previously, we reported a systemically delivered miR-29 mimic MRG-201 that reduced fibrosis in animal models, but at doses prohibiting clinical translation. Here, we generated MRG-229, a next-gen miR-29 mimic with improved chemical stability, conjugated with the internalization moiety BiPPB (PDGFbetaR-specific bicyclic peptide). In TGF-b-treated human lung fibroblasts and precision cut lung slices, MRG-229 decreased COL1A1 and ACTA2 gene expression and reduced collagen production. In bleomycin-treated mice, intravenous or subcutaneous delivery of MRG-229 downregulated profibrotic gene programs at doses more than ten-fold lower than the original compound. In rats and non-human primates, and at clinically relevant doses, MRG-229 was well tolerated, with no adverse findings observed. In human peripheral blood decreased mir-29 concentrations were associated with increased mortality in two cohorts potentially identified as a target population for treatment. Collectively, our results provide support for the development of MRG-229 as a potential therapy in humans with IPF.One Sentence SummaryOne Sentence Summary: A stabilized, next-generation miR-29 mimic has been developed that demonstrates efficacy at commercially viable doses with a robust safety margin in non-human primates.

Sign in / Sign up

Export Citation Format

Share Document