scholarly journals Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data

BMJ ◽  
2011 ◽  
Vol 343 (jul07 1) ◽  
pp. d3805-d3805 ◽  
Author(s):  
J. C. Pickup ◽  
S. C. Freeman ◽  
A. J. Sutton
BMJ ◽  
2019 ◽  
pp. l1328 ◽  
Author(s):  
Giovanni Musso ◽  
Roberto Gambino ◽  
Maurizio Cassader ◽  
Elena Paschetta

AbstractObjectiveTo assess the efficacy and safety of dual sodium glucose cotransporter (SGLT) 1/2 inhibitor sotagliflozin in type 1 diabetes mellitus.DesignMeta-analysis of randomised controlled trials.Data sourcesMedline; Cochrane Library; Embase; international meeting abstracts; international and national clinical trial registries; and websites of US, European, and Japanese regulatory authorities, up to 10 January 2019.Eligibility criteria for selecting studiesRandomised controlled trials evaluating the effect of sotagliflozin versus active comparators or placebo on glycaemic and non-glycaemic outcomes and on adverse events in type 1 diabetes in participants older than 18. Three reviewers extracted data for study characteristics, outcomes of interest, and risk of bias and summarised strength of evidence using the grading of recommendations assessment, development, and evaluation approach. Main outcomes were pooled using random effects models.ResultsOf 739 records identified, six randomised placebo controlled trials (n=3238, duration 4-52 weeks) were included. Sotagliflozin reduced levels of glycated haemoglobin (HbA1c; weighted mean difference −0.34% (95% confidence interval −0.41% to −0.27%), P<0.001); fasting plasma glucose (−16.98 mg/dL, −22.1 to −11.9; 1 mg/dL=0.0555 mmol/L) and two hour-postprandial plasma glucose (−39.2 mg/dL, −50.4 to −28.1); and daily total, basal, and bolus insulin dose (−8.99%, −10.93% to −7.05%; −8.03%, −10.14% to −5.93%; −9.14%, −12.17% to −6.12%; respectively). Sotagliflozin improved time in range (weighted mean difference 9.73%, 6.66% to 12.81%) and other continuous glucose monitoring parameters, and reduced body weight (−3.54%, −3.98% to −3.09%), systolic blood pressure (−3.85 mm Hg, −4.76 to −2.93), and albuminuria (albumin:creatinine ratio −14.57 mg/g, −26.87 to −2.28). Sotagliflozin reduced hypoglycaemia (weighted mean difference −9.09 events per patient year, −13.82 to −4.36) and severe hypoglycaemia (relative risk 0.69, 0.49 to 0.98). However, the drug increased the risk of ketoacidosis (relative risk 3.93, 1.94 to 7.96), genital tract infections (3.12, 2.14 to 4.54), diarrhoea (1.50, 1.08 to 2.10), and volume depletion events (2.19, 1.10 to 4.36). Initial HbA1c and basal insulin dose adjustment were associated with the risk of diabetic ketoacidosis. A sotagliflozin dose of 400 mg/day was associated with a greater improvement in most glycaemic and non-glycaemic outcomes than the 200 mg/day dose, without increasing the risk of adverse events. The quality of evidence was high to moderate for most outcomes, but low for major adverse cardiovascular events and all cause death. The relatively short duration of trials prevented assessment of long term outcomes.ConclusionsIn type 1 diabetes, sotagliflozin improves glycaemic and non-glycaemic outcomes and reduces hypoglycaemia rate and severe hypoglycaemia. The risk of diabetic ketoacidosis could be minimised by appropriate patient selection and down-titration of the basal insulin dose.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e050713
Author(s):  
Emma G Wilmot ◽  
Mark Evans ◽  
Katharine Barnard-Kelly ◽  
M Burns ◽  
Iain Cranston ◽  
...  

IntroductionOptimising glycaemic control in type 1 diabetes (T1D) remains challenging. Flash glucose monitoring with FreeStyle Libre 2 (FSL2) is a novel alternative to the current standard of care self-monitoring of blood glucose (SMBG). No randomised controlled trials to date have explored the potential benefits of FSL2 in T1D. We aim to assess the impact of FSL2 in people with suboptimal glycaemic control T1D in comparison with SMBG.MethodsThis open-label, multicentre, randomised (via stochastic minimisation), parallel design study conducted at eight UK secondary and primary care centres will aim to recruit 180 people age ≥16 years with T1D for >1 year and glycated haemoglobin (HbA1c) 7.5%–11%. Eligible participants will be randomised to 24 weeks of FSL2 (intervention) or SMBG (control) periods, after 2-week of blinded sensor wear. Participants will be assessed virtually or in-person owing to the COVID-19 pandemic. HbA1c will be measured at baseline, 12 and 24 weeks (primary outcome). Participants will be contacted at 4 and 12 weeks for glucose optimisation. Control participants will wear a blinded sensor during the last 2 weeks. Psychosocial outcomes will be measured at baseline and 24 weeks. Secondary outcomes include sensor-based metrics, insulin doses, adverse events and self-report psychosocial measures. Utility, acceptability, expectations and experience of using FSL2 will be explored. Data on health service resource utilisation will be collected.AnalysisEfficacy analyses will follow intention-to-treat principle. Outcomes will be analysed using analysis of covariance, adjusted for the baseline value of the corresponding outcome, minimisation factors and other known prognostic factors. Both within-trial and life-time economic evaluations, informed by modelling from the perspective of the National Health Service setting, will be performed.EthicsThe study was approved by Greater Manchester West Research Ethics Committee (reference 19/NW/0081). Informed consent will be sought from all participants.Trial registration numberNCT03815006.Protocol version4.0 dated 29 June 2020.


Author(s):  
Sara Styles ◽  
Ben Wheeler ◽  
Alisa Boucsein ◽  
Hamish Crocket ◽  
Michel de Lange ◽  
...  

Abstract Purpose Frequent glucose monitoring is necessary for optimal glycaemic control. Second-generation intermittently scanned glucose monitoring (isCGM) systems inform users of out-of-target glucose levels and may reduce monitoring burden. We aim to compare FreeStyle Libre 2 (Abbott Diabetes Care, Witney, U.K.) to self-monitoring of blood glucose in children with type 1 diabetes and sub-optimal glycaemic control. Methods This open-label randomised controlled trial will enrol 100 children (4–13 years inclusive, diagnosis of type 1 diabetes ≥ 6 months, HbA1c 58–110 mmol/mol [7.5–12.2%]), from 5 New Zealand diabetes centres. Following 2 weeks of blinded sensor wear, children will be randomised 1:1 to control or intervention arms. The intervention (duration 12 weeks) includes second-generation isCGM (FreeStyle Libre 2) and education on using interstitial glucose data to manage diabetes. The control group will continue self-monitoring blood glucose. The primary outcome is the difference in glycaemic control (measured as HbA1c) between groups at 12 weeks. Pre-specified secondary outcomes include change in glucose monitoring frequency, glycaemic control metrics and psychosocial outcomes at 12 weeks as well as isCGM acceptability. Discussion This research will investigate the effectiveness of the second-generation isCGM to promote recommended glycaemic control. The results of this trial may have important implications for including this new technology in the management of children with type 1 diabetes. Trial registration This trial was prospectively registered with the Australian New Zealand Clinical Trials Registry on 19 February 2020 (ACTRN12620000190909p) and the World Health Organization International Clinical Trials Registry Platform (Universal Trial Number U1111-1237-0090).


Sign in / Sign up

Export Citation Format

Share Document