scholarly journals De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features

2020 ◽  
Vol 57 (12) ◽  
pp. 808-819
Author(s):  
Daphné Lehalle ◽  
Pierre Vabres ◽  
Arthur Sorlin ◽  
Tatjana Bierhals ◽  
Magali Avila ◽  
...  

IntroductionPigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko’s lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions.Materials and methodsSubsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM.ResultsWe describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko’s lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants.ConclusionThis series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.

2020 ◽  
pp. jbc.RA120.015896
Author(s):  
Fabiana Passaro ◽  
Ilaria De Martino ◽  
Federico Zambelli ◽  
Giorgia Di Benedetto ◽  
Matteo Barbato ◽  
...  

The Yes-associated protein YAP, one of the major effectors of the Hippo pathway together with its related protein TAZ, mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and TAZ regulate a large number of target genes, acting as co-activators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis we identified two molecules which could have a role in the altered genome-wide methylation profile: the long non-coding RNA Ephemeron, whose rapid upregulation is crucial for ESCs transition into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency.


2016 ◽  
Vol 7 (8) ◽  
pp. 601-605
Author(s):  
Xiaoshuang Yan ◽  
Yan Xue ◽  
Yiye Zhou ◽  
Yan Cheng ◽  
Shang Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document