A Geometric Approach to Boundary Layer Problems Exhibiting Resonance

1979 ◽  
Vol 37 (2) ◽  
pp. 436-458 ◽  
Author(s):  
Nancy Kopell
2021 ◽  
Vol 9 (2) ◽  
pp. 35-41
Author(s):  
Manisha Patel ◽  
Hema Surati ◽  
M G Timol

Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99


Sign in / Sign up

Export Citation Format

Share Document