A Complete Optimality Condition in the Inverse Problem of Optimal Control

1984 ◽  
Vol 22 (2) ◽  
pp. 327-341 ◽  
Author(s):  
Takao Fujii ◽  
Masaru Narazaki
2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 124
Author(s):  
Faïçal Ndaïrou ◽  
Delfim F. M. Torres

Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.


2002 ◽  
Vol 7 (1) ◽  
pp. 35-51
Author(s):  
Bui An Ton

An inverse problem, the determination of the shape and a convective coefficient on a part of the boundary from partial measurements of the solution, is studied using 2-person optimal control techniques.


2000 ◽  
Vol 23 (9) ◽  
pp. 605-616 ◽  
Author(s):  
R. Enkhbat

The problem of maximizing a nonsmooth convex function over an arbitrary set is considered. Based on the optimality condition obtained by Strekalovsky in 1987 an algorithm for solving the problem is proposed. We show that the algorithm can be applied to the nonconvex optimal control problem as well. We illustrate the method by describing some computational experiments performed on a few nonconvex optimal control problems.


Sign in / Sign up

Export Citation Format

Share Document