scholarly journals Distributed-Order Non-Local Optimal Control

Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 124
Author(s):  
Faïçal Ndaïrou ◽  
Delfim F. M. Torres

Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.

2009 ◽  
Vol 06 (07) ◽  
pp. 1221-1233 ◽  
Author(s):  
MARÍA BARBERO-LIÑÁN ◽  
MIGUEL C. MUÑOZ-LECANDA

A geometric method is described to characterize the different kinds of extremals in optimal control theory. This comes from the use of a presymplectic constraint algorithm starting from the necessary conditions given by Pontryagin's Maximum Principle. The algorithm must be run twice so as to obtain suitable sets that once projected must be compared. Apart from the design of this general algorithm useful for any optimal control problem, it is shown how to classify the set of extremals and, in particular, how to characterize the strict abnormality. An example of strict abnormal extremal for a particular control-affine system is also given.


Author(s):  
J. M. Blatt ◽  
J. D. Gray

AbstractPontryagin's maximum principle is derived by elementary mathematical techniques. The conditions on the functions which enter are generally somewhat more stringent than in Pontryagin's derivation, but one (practically very awkward) condition of Pontryagin can be relaxed: continuity in the time variable can be replaced by a much weaker condition.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1883
Author(s):  
Faïçal Ndaïrou ◽  
Delfim F. M. Torres

We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to pointwise constraints is new and requires more sophisticated techniques to include a maximality condition. We start by proving results on continuity of solutions due to needle-like control perturbations. Then, we derive a differentiability result on the state solutions with respect to the perturbed trajectories. We end by stating and proving the Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating its applicability with an example.


Sign in / Sign up

Export Citation Format

Share Document