scholarly journals On the distribution of random walk hitting times in random trees

Author(s):  
Joubert Oosthuizen ◽  
Stephan Wagner
2011 ◽  
Vol 26 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Mokhtar Konsowa ◽  
Fahimah Al-Awadhi

The speed of the random walk on a tree is the rate of escaping its starting point. It depends on the way that the branching occurs in the sense that if the average number of branching is large, the speed is more likely to be positive. The speed on some models of random trees is calculated via calculating the hitting times of the consecutive levels of the tree.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1431
Author(s):  
Gaia Pozzoli ◽  
Mattia Radice ◽  
Manuele Onofri ◽  
Roberto Artuso

We consider a continuous-time random walk which is the generalization, by means of the introduction of waiting periods on sites, of the one-dimensional non-homogeneous random walk with a position-dependent drift known in the mathematical literature as Gillis random walk. This modified stochastic process allows to significantly change local, non-local and transport properties in the presence of heavy-tailed waiting-time distributions lacking the first moment: we provide here exact results concerning hitting times, first-time events, survival probabilities, occupation times, the moments spectrum and the statistics of records. Specifically, normal diffusion gives way to subdiffusion and we are witnessing the breaking of ergodicity. Furthermore we also test our theoretical predictions with numerical simulations.


1990 ◽  
Vol 4 (4) ◽  
pp. 489-492 ◽  
Author(s):  
José Luis Palacios

Aleliunas et al. [3] proved that for a random walk on a connected raph G = (V, E) on N vertices, the expected minimum number of steps to visit all vertices is bounded by 2|E|(N - 1), regardless of the initial state. We give here a simple proof of that result through an equality involving hitting times of vertices that can be extended to an inequality for hitting times of edges, thus obtaining a bound for the expected minimum number of steps to visit all edges exactly once in each direction.


1972 ◽  
Vol 9 (3) ◽  
pp. 572-579 ◽  
Author(s):  
D. J. Emery

It is shown that, under certain conditions, satisfied by stable distributions, symmetric distributions, distributions with zero mean and finite second moment and other distributions, the distribution function of the maxima of successive partial sums of identically distributed random variables has an asymptotic property. This property implies the regular variation of the tail of the distribution of the hitting times of the associated random walk, and hence that these hitting times belong to the domain of attraction of a stable law.


1999 ◽  
Vol 36 (2) ◽  
pp. 593-600
Author(s):  
Jean Bertoin

Consider an oscillating integer valued random walk up to the first hitting time of some fixed integer x > 0. Suppose there is a fee to be paid each time the random walk crosses the level x, and that the amount corresponds to the overshoot. We determine the distribution of the sum of these fees in terms of the renewal functions of the ascending and descending ladder heights. The proof is based on the observation that some path transformation of the random walk enables us to translate the problem in terms of the intersection of certain regenerative sets.


Author(s):  
MOKHTAR H. KONSOWA

We study the relationship between the type of the random walk on some random trees and the structure of those trees in terms of fractal and resistance dimensions. This paper generalizes some results of Refs. 8–10.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
José Luis Palacios

Using classical arguments we derive a formula for the moments of hitting times for an ergodic Markov chain. We apply this formula to the case of simple random walk on trees and show, with an elementary electric argument, that all the moments are natural numbers.


Sign in / Sign up

Export Citation Format

Share Document