Limiting behaviour of the distributions of the maxima of partial sums of certain random walks

1972 ◽  
Vol 9 (3) ◽  
pp. 572-579 ◽  
Author(s):  
D. J. Emery

It is shown that, under certain conditions, satisfied by stable distributions, symmetric distributions, distributions with zero mean and finite second moment and other distributions, the distribution function of the maxima of successive partial sums of identically distributed random variables has an asymptotic property. This property implies the regular variation of the tail of the distribution of the hitting times of the associated random walk, and hence that these hitting times belong to the domain of attraction of a stable law.

1972 ◽  
Vol 9 (03) ◽  
pp. 572-579 ◽  
Author(s):  
D. J. Emery

It is shown that, under certain conditions, satisfied by stable distributions, symmetric distributions, distributions with zero mean and finite second moment and other distributions, the distribution function of the maxima of successive partial sums of identically distributed random variables has an asymptotic property. This property implies the regular variation of the tail of the distribution of the hitting times of the associated random walk, and hence that these hitting times belong to the domain of attraction of a stable law.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


2010 ◽  
Vol 42 (2) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation ofNindependent copies of a random-coefficient AR(1) process with random coefficienta∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the normalizationN1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficientahas probability density vanishing regularly ata= 1 with exponentb∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅t} exhibits long memory. In particular, for {X̅t}, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


2010 ◽  
Vol 42 (02) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 &lt; α &lt; 2) is discussed. We show that, under the normalization N 1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficient a has probability density vanishing regularly at a = 1 with exponent b ∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅ t } exhibits long memory. In particular, for {X̅ t }, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


1975 ◽  
Vol 12 (02) ◽  
pp. 324-332
Author(s):  
Allan Gut

Let Sn, n = 1, 2, ‥, denote the partial sums of i.i.d. random variables with the common distribution function F and positive, finite mean. Let N(c) = min [k; Sk &gt; c‥kp ], c ≥ 0, 0 ≤ p &lt; 1. Under the assumption that F belongs to the domain of attraction of a stable law with index α, 1 &lt; α ≤ 2, functional central limit theorems for the first passage time process N(nt), 0 ≤ t ≤ 1, when n → ∞, are derived in the function space D[0,1].


1975 ◽  
Vol 12 (02) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn (x) — G(x) is asymptotically equal to c.H(x)n −3/2 γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


1986 ◽  
Vol 23 (04) ◽  
pp. 922-936
Author(s):  
Gane Samb Lo

The problem of estimating the exponent of a stable law is receiving an increasing amount of attention because Pareto's law (or Zipf's law) describes many biological phenomena very well (see e.g. Hill (1974)). This problem was first solved by Hill (1975), who proposed an estimate, and the convergence of that estimate to some positive and finite number was shown to be a characteristic of distribution functions belonging to the Fréchet domain of attraction (Mason (1982)). As a contribution to a complete theory of inference for the upper tail of a general distribution function, we give the asymptotic behavior (weak and strong) of Hill's estimate when the associated distribution function belongs to the Gumbel domain of attraction. Examples, applications and simulations are given.


2006 ◽  
Vol 43 (1) ◽  
pp. 79-114
Author(s):  
Han-Ying Liang ◽  
Jong-Il Baek ◽  
Josef Steinebach

Let X1, X2,… be independent, but not necessarily identically distributed random variables in the domain of attraction of a stable law with index 0<a<2. This paper uses Mn=max 1?i?n|Xi| to establish a self-normalized law of the iterated logarithm (LIL) for partial sums. Similarly self-normalized increments of partial sums are studied as well. In particular, the results of self-normalized sums of Horváth and Shao[9]under independent and identically distributed random variables are extended and complemented. As applications, some corresponding results for self-normalized weighted sums of iid random variables are also concluded.


1986 ◽  
Vol 23 (4) ◽  
pp. 922-936 ◽  
Author(s):  
Gane Samb Lo

The problem of estimating the exponent of a stable law is receiving an increasing amount of attention because Pareto's law (or Zipf's law) describes many biological phenomena very well (see e.g. Hill (1974)). This problem was first solved by Hill (1975), who proposed an estimate, and the convergence of that estimate to some positive and finite number was shown to be a characteristic of distribution functions belonging to the Fréchet domain of attraction (Mason (1982)). As a contribution to a complete theory of inference for the upper tail of a general distribution function, we give the asymptotic behavior (weak and strong) of Hill's estimate when the associated distribution function belongs to the Gumbel domain of attraction. Examples, applications and simulations are given.


Sign in / Sign up

Export Citation Format

Share Document