asymptotic property
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1517
Author(s):  
Yiren Chen

Recently, periodic traveling waves, which include periodically symmetric traveling waves of nonlinear equations, have received great attention. This article uses some bifurcations of the traveling wave system to investigate the explicit periodic wave solutions with parameter α and their asymptotic property for the modified Fornberg–Whitham equation. Furthermore, when α tends to given parametric values, the elliptic periodic wave solutions become the other three types of nonlinear wave solutions, which include the trigonometric periodic blow-up solution, the hyperbolic smooth solitary wave solution, and the hyperbolic blow-up solution.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050030
Author(s):  
Karol Gryszka

We introduce the asymptotic property associated with recurrence-like behavior of orbits in dynamical systems in general metric spaces. We define a notion of weak asymptotic periodicity and determine its elementary properties and relations including the invariance by topological conjugacy. We use the equicontinuity and the topology of the space to describe necessary and sufficient conditions for the existence of such a behavior.


2019 ◽  
Vol 17 (1) ◽  
pp. 1476-1489 ◽  
Author(s):  
Yuejiao Wang ◽  
Zaiming Liu ◽  
Yuqing Chu ◽  
Yingqiu Li

Abstract Remerova et al. [Random fluid limit of an overloaded polling model, Adv. Appl. Probab., 2014, 46, 76–101] studied the fluid asymptotics of the joint queue length process for an overloaded cyclic polling system with multigated service discipline by exploiting the connection with multi-type branching processes. In contrast to the heavy traffic behaviors, the cycle time of the overloaded polling system increases by a deterministic times over times under passage to the fluid dynamics and the fluid limit preserves some randomness. The present paper aims to extend the overloaded asymptotics in Remerova et al. [Random fluid limit of an overloaded polling model, Adv. Appl. Probab., 2014, 46, 76–101] to the corresponding polling system with general branching-type service disciplines and customer re-routing policy. A unifying overloaded asymptotic property is derived. Due to the exhaustiveness, the property is a natural extension of the classical polling model with multigated service discipline in Remerova et al. [Random fluid limit of an overloaded polling model, Adv. Appl. Probab., 2014, 46, 76–101] and provides new exact results that have not been observed before for rerouting policy. Additionally, a stochastic simulation is undertaken for the validation of the fluid limit and the optimization of the gating indexes to minimize the total population is considered as an example to demonstrate the usefulness of the random fluid limit.


Sign in / Sign up

Export Citation Format

Share Document