RANDOM WALKS AND DIMENSIONS OF RANDOM TREES

Author(s):  
MOKHTAR H. KONSOWA

We study the relationship between the type of the random walk on some random trees and the structure of those trees in terms of fractal and resistance dimensions. This paper generalizes some results of Refs. 8–10.


1998 ◽  
Vol 11 (1) ◽  
pp. 9-28 ◽  
Author(s):  
Jacek Banasiak ◽  
Janusz R. Mika

In the paper we analyze singularly perturbed telegraph systems applying the newly developed compressed asymptotic method and show that the diffusion equation is an asymptotic limit of singularly perturbed telegraph system of equations. The results are applied to the random walk theory for which the relationship between correlated and uncorrelated random walks is explained in asymptotic terms.



Author(s):  
Abdelghani Bellaachia ◽  
Mohammed Al-Dhelaan

Random walks on graphs have been extensively used for a variety of graph-based problems such as ranking vertices, predicting links, recommendations, and clustering. However, many complex problems mandate a high-order graph representation to accurately capture the relationship structure inherent in them. Hypergraphs are particularly useful for such models due to the density of information stored in their structure. In this paper, we propose a novel extension to defining random walks on hypergraphs. Our proposed approach combines the weights of destination vertices and hyperedges in a probabilistic manner to accurately capture transition probabilities. We study and analyze our generalized form of random walks suitable for the structure of hypergraphs. We show the effectiveness of our model by conducting a text ranking experiment on a real world data set with a 9% to 33% improvement in precision and a range of 7% to 50% improvement in Bpref over other random walk approaches.



2011 ◽  
Vol 26 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Mokhtar Konsowa ◽  
Fahimah Al-Awadhi

The speed of the random walk on a tree is the rate of escaping its starting point. It depends on the way that the branching occurs in the sense that if the average number of branching is large, the speed is more likely to be positive. The speed on some models of random trees is calculated via calculating the hitting times of the consecutive levels of the tree.



2005 ◽  
Vol 10 (1) ◽  
pp. 20-38 ◽  
Author(s):  
BARBARA ROSSI

Many authors have documented that it is challenging to explain exchange rate fluctuations with macroeconomic fundamentals: a random walk forecasts future exchange rates better than existing macroeconomic models. This paper applies newly developed tests for nested models that are robust to the presence of parameter instability. The empirical evidence shows that for some countries we can reject the hypothesis that exchange rates are random walks. This raises the possibility that economic models were previously rejected not because the fundamentals are completely unrelated to exchange rate fluctuations, but because the relationship is unstable over time and, thus, difficult to capture by Granger causality tests or by forecast comparisons. We also analyze forecasts that exploit the time variation in the parameters and find that, in some cases, they can improve over the random walk.



2021 ◽  
Author(s):  
Matheus Guedes de Andrade ◽  
Franklin De Lima Marquezino ◽  
Daniel Ratton Figueiredo

Quantum walks on graphs are ubiquitous in quantum computing finding a myriad of applications. Likewise, random walks on graphs are a fundamental building block for a large number of algorithms with diverse applications. While the relationship between quantum and random walks has been recently discussed in specific scenarios, this work establishes a formal equivalence between the two processes on arbitrary finite graphs and general conditions for shift and coin operators. It requires empowering random walks with time heterogeneity, where the transition probability of the walker is non-uniform and time dependent. The equivalence is obtained by equating the probability of measuring the quantum walk on a given node of the graph and the probability that the random walk is at that same node, for all nodes and time steps. The first result establishes procedure for a stochastic matrix sequence to induce a random walk that yields the exact same vertex probability distribution sequence of any given quantum walk, including the scenario with multiple interfering walkers. The second result establishes a similar procedure in the opposite direction. Given any random walk, a time-dependent quantum walk with the exact same vertex probability distribution is constructed. Interestingly, the matrices constructed by the first procedure allows for a different simulation approach for quantum walks where node samples respect neighbor locality and convergence is guaranteed by the law of large numbers, enabling efficient (polynomial-time) sampling of quantum graph trajectories. Furthermore, the complexity of constructing this sequence of matrices is discussed in the general case.



Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Jewgeni H. Dshalalow ◽  
Ryan T. White

In a classical random walk model, a walker moves through a deterministic d-dimensional integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a walker randomly moves over a randomly configured (non equidistant) lattice jumping a random number of steps. In some further variants, there is a limited access walker’s moves. That is, the walker’s movements are not available in real time. Instead, the observations are limited to some random epochs resulting in a delayed information about the real-time position of the walker, its escape time, and location outside a bounded subset of the real space. In this case we target the virtual first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In this paper, we give a short historical background on random walk, discuss various directions in the development of random walk theory, and survey most of our results obtained in the last 25–30 years, including the very recent ones dated 2020–21. Among different applications of such random walks, we discuss stock markets, stochastic networks, games, and queueing.



2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.



1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.



2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.



1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.



Sign in / Sign up

Export Citation Format

Share Document