Lyapunov Functions and Global Stability for Age-Structured HIV Infection Model

2012 ◽  
Vol 72 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Gang Huang ◽  
Xianning Liu ◽  
Yasuhiro Takeuchi
2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050059
Author(s):  
Dongxue Yan ◽  
Xianlong Fu

This paper deals with an age-structured HIV infection model with logistic growth for target cells and both virus-to-cell and cell-to-cell infection routes. Based on the existence of the infection-free and infection equilibria and some rigorous analyses for the considered model, we study the asymptotic stability of these equilibria via determining the distribution of eigenvalues. We also address the persistence of the solution semi-flow by proving the existence of a global attractor. Furthermore, Hopf bifurcation occurring at the positive steady state is exploited. At last, some numerical examples are provided to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document