scholarly journals Sharp Weyl Law for Signed Counting Function of Positive Interior Transmission Eigenvalues

2015 ◽  
Vol 47 (4) ◽  
pp. 3212-3234 ◽  
Author(s):  
E. Lakshtanov ◽  
B. Vainberg
Author(s):  
Sandro Coriasco ◽  
Moritz Doll

AbstractWe study the asymptotic behaviour of the eigenvalue counting function for self-adjoint elliptic linear operators defined through classical weighted symbols of order (1, 1), on an asymptotically Euclidean manifold. We first prove a two-term Weyl formula, improving previously known remainder estimates. Subsequently, we show that under a geometric assumption on the Hamiltonian flow at infinity, there is a refined Weyl asymptotics with three terms. The proof of the theorem uses a careful analysis of the flow behaviour in the corner component of the boundary of the double compactification of the cotangent bundle. Finally, we illustrate the results by analysing the operator $$Q=(1+|x|^2)(1-\varDelta )$$ Q = ( 1 + | x | 2 ) ( 1 - Δ ) on $$\mathbb {R}^d$$ R d .


1994 ◽  
Vol 08 (08n09) ◽  
pp. 469-478 ◽  
Author(s):  
C. W. J. Beenakker

Recent developments in the scaling theory of phase-coherent conduction through a disordered wire are reviewed. The Dorokhov–Mello–Pereyra–Kumar equation for the distribution of transmission eigenvalues has been solved exactly, in the absence of time-reversal symmetry. Comparison with the previous prediction of random-matrix theory shows that this prediction was highly accurate but not exact: the repulsion of the smallest eigenvalues was overestimated by a factor of two. This factor of two resolves several disturbing discrepancies between random-matrix theory and microscopic calculations, notably in the magnitude of the universal conductance fluctuations in the metallic regime, and in the width of the log-normal conductance distribution in the insulating regime.


2021 ◽  
Vol 9 (1) ◽  
pp. 164-170
Author(s):  
Y. Gal ◽  
M. Zabolotskyi ◽  
M. Mostova

The Blaschke products form an important subclass of analytic functions on the unit disc with bounded Nevanlinna characteristic and also are meromorphic functions on $\mathbb{C}$ except for the accumulation points of zeros $B(z)$. Asymptotics and estimates of the logarithmic derivative of meromorphic functions play an important role in various fields of mathematics. In particular, such problems in Nevanlinna's theory of value distribution were studied by Goldberg A.A., Korenkov N.E., Hayman W.K., Miles J. and in the analytic theory of differential equations -- by Chyzhykov I.E., Strelitz Sh.I. Let $z_0=1$ be the only boundary point of zeros $(a_n)$ %=1-r_ne^{i\psi_n},$ $-\pi/2+\eta<\psi_n<\pi/2-\eta,$ $r_n\to0+$ as $n\to+\infty,$ of the Blaschke product $B(z);$ $\Gamma_m=\bigcup\limits_{j=1}^{m}\{z:|z|<1,\mathop{\text{arg}}(1-z)=-\theta_j\}=\bigcup\limits_{j=1}^{m}l_{\theta_j},$ $-\pi/2+\eta<\theta_1<\theta_2<\ldots<\theta_m<\pi/2-\eta,$ be a finite system of rays, $0<\eta<1$; $\upsilon(t)$ be continuous on $[0,1)$, $\upsilon(0)=0$, slowly increasing at the point 1 function, that is $\upsilon(t)\sim\upsilon\left({(1+t)}/2\right),$ $t\to1-;$ $n(t,\theta_j;B)$ be a number of zeros $a_n=1-r_ne^{i\theta_j}$ of the product $B(z)$ on the ray $l_{\theta_j}$ such that $1-r_n\leq t,$ $0<t<1.$ We found asymptotics of the logarithmic derivative of $B(z)$ as $z=1-re^{-i\varphi}\to1,$ $-\pi/2<\varphi<\pi/2,$ $\varphi\neq\theta_j,$ under the condition that zeros of $B(z)$ lay on $\Gamma_m$ and $n(t,\theta_j;B)\sim \Delta_j\upsilon(t),$ $t\to1-,$ for all $j=\overline{1,m},$ $0\leq\Delta_j<+\infty.$ We also considered the inverse problem for such $B(z).$


1996 ◽  
Vol 10 (15) ◽  
pp. 681-688 ◽  
Author(s):  
M. CASELLE

We discuss the distribution of transmission eigenvalues in the strongly localized regime in the presence of both a magnetic field and spin-orbit scattering. We show that, under suitable conditions, this distribution can be described by a new universality class labelled not only by the index β but also by a new index η. This result is obtained by mapping the problem into that of a suitable Calogero-Sutherland model.


2017 ◽  
Vol 33 (12) ◽  
pp. 125002 ◽  
Author(s):  
S Cogar ◽  
D Colton ◽  
S Meng ◽  
P Monk

Sign in / Sign up

Export Citation Format

Share Document