Mathematical Control and Related Fields
Latest Publications


TOTAL DOCUMENTS

60
(FIVE YEARS 20)

H-INDEX

7
(FIVE YEARS 0)

Published By American Institute Of Mathematical Sciences

2156-8472

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Michael Schönlein

<p style='text-indent:20px;'>This paper presents computational methods for families of linear systems depending on a parameter. Such a family is called ensemble controllable if for any family of parameter-dependent target states and any neighborhood of it there is a parameter-independent input steering the origin into the neighborhood. Assuming that a family of systems is ensemble controllable we present methods to construct suitable open-loop input functions. Our approach to solve this infinite-dimensional task is based on a combination of methods from the theory of linear integral equations and finite-dimensional control theory.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xenia Kerkhoff ◽  
Sandra May

<p style='text-indent:20px;'>We consider one-dimensional distributed optimal control problems with the state equation being given by the viscous Burgers equation. We discretize using a space-time discontinuous Galerkin approach. We use upwind flux in time and the symmetric interior penalty approach for discretizing the viscous term. Our focus is on the discretization of the convection terms. We aim for using conservative discretizations for the convection terms in both the state and the adjoint equation, while ensuring that the approaches of discretize-then-optimize and optimize-then-discretize commute. We show that this is possible if the arising source term in the adjoint equation is discretized properly, following the ideas of well-balanced discretizations for balance laws. We support our findings by numerical results.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mengxian Lv ◽  
Jianghao Hao

<p style='text-indent:20px;'>In this paper we consider a system of viscoelastic wave equations of Kirchhoff type with dynamic boundary conditions. Supposing the relaxation functions <inline-formula><tex-math id="M1">\begin{document}$ g_i $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M2">\begin{document}$ (i = 1, 2, \cdots, l) $\end{document}</tex-math></inline-formula> satisfy <inline-formula><tex-math id="M3">\begin{document}$ g_i(t)\leq-\xi_i(t)G(g_i(t)) $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math></inline-formula> is an increasing and convex function near the origin and <inline-formula><tex-math id="M5">\begin{document}$ \xi_i $\end{document}</tex-math></inline-formula> are nonincreasing, we establish some optimal and general decay rates of the energy using the multiplier method and some properties of convex functions. Moreover, we obtain the finite time blow-up result of solution with nonpositive or arbitrary positive initial energy. The results in this paper are obtained without imposing any growth condition on weak damping term at the origin. Our results improve and generalize several earlier related results in the literature.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Bing Sun

<p style='text-indent:20px;'>In this article, we are concerned with optimal control for the transverse vibration of a moving string with time-varying lengths. In the fixed final time horizon case, the Pontryagin maximum principle is established for the investigational system with a moving boundary, owing to the Dubovitskii and Milyutin functional analytical approach. A remark then follows for discussing the utilization of obtained necessary optimality condition.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zhenghong Qiu ◽  
Jianhui Huang ◽  
Tinghan Xie

<p style='text-indent:20px;'>This paper investigates a class of unified stochastic linear-quadratic-Gaussian (LQG) social optima problems involving a large number of weakly-coupled interactive agents under a generalized setting. For each individual agent, the control and state process enters both diffusion and drift terms in its linear dynamics, and the control weight might be <i>indefinite</i> in cost functional. This setup is innovative and has great theoretical and realistic significance as its applications in mathematical finance (e.g., portfolio selection in mean-variation model). Using some <i>fully-coupled</i> variational analysis under the person-by-person optimality principle, and the mean-field approximation method, the decentralized social control is derived by a class of new type consistency condition (CC) system for typical representative agent. Such CC system is some mean-field forward-backward stochastic differential equation (MF-FBSDE) combined with <i>embedding representation</i>. The well-posedness of such forward-backward stochastic differential equation (FBSDE) system is carefully examined. The related social asymptotic optimality is related to the convergence of the average of a series of weakly-coupled backward stochastic differential equation (BSDE). They are verified through some Lyapunov equations.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Julien Dambrine ◽  
Morgan Pierre

<p style='text-indent:20px;'>We consider a ship hull design problem based on Michell's wave resistance. The half hull is represented by a nonnegative function and we seek the function whose domain of definition has a given area and which minimizes the total resistance for a given speed and a given volume. We show that the optimal hull depends only on two parameters without dimension, the viscous drag coefficient and the Froude number of the area of the support. We prove that, up to uniqueness, the optimal hull depends continuously on these two parameters. Moreover, the contribution of Michell's wave resistance vanishes as either the Froude number or the drag coefficient goes to infinity. Numerical simulations confirm the theoretical results for large Froude numbers. For Froude numbers typically smaller than <inline-formula><tex-math id="M1">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>, the famous bulbous bow is numerically recovered. For intermediate Froude numbers, a "sinking" phenomenon occurs. It can be related to the nonexistence of a minimizer.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Esteban Hernández ◽  
Christophe Prieur ◽  
Eduardo Cerpa

<p style='text-indent:20px;'>In this paper the Single Particle Model is used to describe the behavior of a Li-ion battery. The main goal is to design a feedback input current in order to regulate the State of Charge (SOC) to a prescribed reference trajectory. In order to do that, we use the boundary ion concentration as output. First, we measure it directly and then we assume the existence of an appropriate estimator, which has been established in the literature using voltage measurements. By applying backstepping and Lyapunov tools, we are able to build observers and to design output feedback controllers giving a positive answer to the SOC tracking problem. We provide convergence proofs and perform some numerical simulations to illustrate our theoretical results.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jochen Bröcker

<p style='text-indent:20px;'>A variant of the optimal control problem is considered which is nonstandard in that the performance index contains "stochastic" integrals, that is, integrals against very irregular functions. The motivation for considering such performance indices comes from dynamical estimation problems where observed time series need to be "fitted" with trajectories of dynamical models. The observations may be contaminated with white noise, which gives rise to the nonstandard performance indices. Problems of this kind appear in engineering, physics, and the geosciences where this is referred to as data assimilation. The fact that typical models in the geosciences do not satisfy linear growth nor monotonicity conditions represents an additional difficulty. Pathwise existence of minimisers is obtained, along with a maximum principle as well as preliminary results in dynamic programming. The results also extend previous work on the maximum aposteriori estimator of trajectories of diffusion processes.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Serge Nicaise

<p style='text-indent:20px;'>In this paper, we obtain some stability results of systems corresponding to the coupling between a dissipative evolution equation (set in an infinite dimensional space) and an ordinary differential equation. Many problems from physics enter in this framework, let us mention dispersive medium models, generalized telegraph equations, Volterra integro-differential equations, and cascades of ODE-hyperbolic systems. The goal is to find sufficient (and necessary) conditions on the involved operators that garantee stability properties of the system, i.e., strong stability, exponential stability or polynomial one. We also illustrate our abstract statements for different concrete examples, where new results are achieved.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiuxiang Zhou ◽  
Shu Luan

<p style='text-indent:20px;'>This paper is devoted to analyzing the controllability to rest of the Gurtin-Pipkin model, which is a class of differential equations with memory terms. The goal is not only to derive the state to vanish at some time but also to require the memory term to vanish at the same time, ensuring that the controlled system is controllable to rest. In order to get rid of the influence of memory, the controllability result is obtained by means of the Fourier type approach and the moment theory.</p>


Sign in / Sign up

Export Citation Format

Share Document