scholarly journals Approximating Nash Equilibria and Dense Subgraphs via an Approximate Version of Carathéodory's Theorem

2018 ◽  
Vol 47 (3) ◽  
pp. 960-981 ◽  
Author(s):  
Siddharth Barman
2011 ◽  
pp. 65-87 ◽  
Author(s):  
A. Rubinstein

The article considers some aspects of the patronized goods theory with respect to efficient and inefficient equilibria. The author analyzes specific features of patronized goods as well as their connection with market failures, and conjectures that they are related to the emergence of Pareto-inefficient Nash equilibria. The key problem is the analysis of the opportunities for transforming inefficient Nash equilibrium into Pareto-optimal Nash equilibrium for patronized goods by modifying the institutional environment. The paper analyzes social motivation for institutional modernization and equilibrium conditions in the generalized Wicksell-Lindahl model for patronized goods. The author also considers some applications of patronized goods theory to social policy issues.


2020 ◽  
Vol 81 (11) ◽  
pp. 2108-2131
Author(s):  
V. I. Zhukovskiy ◽  
A. S. Gorbatov ◽  
K. N. Kudryavtsev

2021 ◽  
Vol 22 (2) ◽  
pp. 1-38
Author(s):  
Julian Gutierrez ◽  
Paul Harrenstein ◽  
Giuseppe Perelli ◽  
Michael Wooldridge

We define and investigate a novel notion of expressiveness for temporal logics that is based on game theoretic equilibria of multi-agent systems. We use iterated Boolean games as our abstract model of multi-agent systems [Gutierrez et al. 2013, 2015a]. In such a game, each agent  has a goal  , represented using (a fragment of) Linear Temporal Logic ( ) . The goal  captures agent  ’s preferences, in the sense that the models of  represent system behaviours that would satisfy  . Each player controls a subset of Boolean variables , and at each round in the game, player is at liberty to choose values for variables in any way that she sees fit. Play continues for an infinite sequence of rounds, and so as players act they collectively trace out a model for , which for every player will either satisfy or fail to satisfy their goal. Players are assumed to act strategically, taking into account the goals of other players, in an attempt to bring about computations satisfying their goal. In this setting, we apply the standard game-theoretic concept of (pure) Nash equilibria. The (possibly empty) set of Nash equilibria of an iterated Boolean game can be understood as inducing a set of computations, each computation representing one way the system could evolve if players chose strategies that together constitute a Nash equilibrium. Such a set of equilibrium computations expresses a temporal property—which may or may not be expressible within a particular fragment. The new notion of expressiveness that we formally define and investigate is then as follows: What temporal properties are characterised by the Nash equilibria of games in which agent goals are expressed in specific fragments of  ? We formally define and investigate this notion of expressiveness for a range of fragments. For example, a very natural question is the following: Suppose we have an iterated Boolean game in which every goal is represented using a particular fragment of : is it then always the case that the equilibria of the game can be characterised within ? We show that this is not true in general.


Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 120642
Author(s):  
Evangelos G. Tsimopoulos ◽  
Michael C. Georgiadis

Games ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 55
Author(s):  
Markus Kinateder ◽  
Luca Paolo Merlino

In this paper, we propose a game in which each player decides with whom to establish a costly connection and how much local public good is provided when benefits are shared among neighbors. We show that, when agents are homogeneous, Nash equilibrium networks are nested split graphs. Additionally, we show that the game is a potential game, even when we introduce heterogeneity along several dimensions. Using this result, we introduce stochastic best reply dynamics and show that this admits a unique and stationary steady state distribution expressed in terms of the potential function of the game. Hence, even if the set of Nash equilibria is potentially very large, the long run predictions are sharp.


2006 ◽  
Vol 35 (3) ◽  
pp. 455-464 ◽  
Author(s):  
José C. R. Alcantud ◽  
Carlos Alós-Ferrer

Sign in / Sign up

Export Citation Format

Share Document