scholarly journals Hyperspectral Super-resolution Accounting for Spectral Variability: Coupled Tensor LL1-Based Recovery and Blind Unmixing of the Unknown Super-resolution Image

2022 ◽  
Vol 15 (1) ◽  
pp. 110-138
Author(s):  
Clémence Prévost ◽  
Ricardo A. Borsoi ◽  
Konstantin Usevich ◽  
David Brie ◽  
José C. M. Bermudez ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 1956
Author(s):  
Jingyu Cong ◽  
Xianpeng Wang ◽  
Xiang Lan ◽  
Mengxing Huang ◽  
Liangtian Wan

The traditional frequency-modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) radar two-dimensional (2D) super-resolution (SR) estimation algorithm for target localization has high computational complexity, which runs counter to the increasing demand for real-time radar imaging. In this paper, a fast joint direction-of-arrival (DOA) and range estimation framework for target localization is proposed; it utilizes a very deep super-resolution (VDSR) neural network (NN) framework to accelerate the imaging process while ensuring estimation accuracy. Firstly, we propose a fast low-resolution imaging algorithm based on the Nystrom method. The approximate signal subspace matrix is obtained from partial data, and low-resolution imaging is performed on a low-density grid. Then, the bicubic interpolation algorithm is used to expand the low-resolution image to the desired dimensions. Next, the deep SR network is used to obtain the high-resolution image, and the final joint DOA and range estimation is achieved based on the reconstructed image. Simulations and experiments were carried out to validate the computational efficiency and effectiveness of the proposed framework.


Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


2005 ◽  
Vol 23 (7) ◽  
pp. 671-679 ◽  
Author(s):  
Di Zhang ◽  
Huifang Li ◽  
Minghui Du

Sign in / Sign up

Export Citation Format

Share Document