spectral variability
Recently Published Documents


TOTAL DOCUMENTS

587
(FIVE YEARS 114)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Vol 15 (1) ◽  
pp. 110-138
Author(s):  
Clémence Prévost ◽  
Ricardo A. Borsoi ◽  
Konstantin Usevich ◽  
David Brie ◽  
José C. M. Bermudez ◽  
...  

2021 ◽  
Vol 163 (1) ◽  
pp. 11
Author(s):  
Michael L. Palumbo III ◽  
Eric B. Ford ◽  
Jason T. Wright ◽  
Suvrath Mahadevan ◽  
Alexander W. Wise ◽  
...  

Abstract Owing to recent advances in radial-velocity instrumentation and observation techniques, the detection of Earth-mass planets around Sun-like stars may soon be primarily limited by intrinsic stellar variability. Several processes contribute to this variability, including starspots, pulsations, and granulation. Although many previous studies have focused on techniques to mitigate signals from pulsations and other types of magnetic activity, granulation noise has to date only been partially addressed by empirically motivated observation strategies and magnetohydrodynamic simulations. To address this deficit, we present the GRanulation And Spectrum Simulator (GRASS), a new tool designed to create time-series synthetic spectra with granulation-driven variability from spatially and temporally resolved observations of solar absorption lines. In this work, we present GRASS, detail its methodology, and validate its model against disk-integrated solar observations. As a first-of-its-kind empirical model for spectral variability due to granulation in a star with perfectly known center-of-mass radial-velocity behavior, GRASS is an important tool for testing new methods of disentangling granular line-shape changes from true Doppler shifts.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 492
Author(s):  
Paolo Giommi ◽  
Paolo Padovani

We review and discuss recent results on the search for correlations between astrophysical neutrinos and γ-ray-detected sources, with many extragalactic studies reporting potential associations with different types of blazars. We investigate possible dependencies on blazar sub-classes by using the largest catalogues and all the multi-frequency data available. Through the study of similarities and differences in these sources we conclude that blazars come in two distinct flavours: LBLs and IHBLs (low-energy-peaked and intermediate-high-energy-peaked objects). These are distinguished by widely different properties such as the overall spectral energy distribution shape, jet speed, cosmological evolution, broad-band spectral variability, and optical polarisation properties. Although blazars of all types have been proposed as neutrino sources, evidence is accumulating in favour of IHBLs being the counterparts of astrophysical neutrinos. If this is indeed the case, we argue that the peculiar observational properties of IHBLs may be indirectly related to proton acceleration to very high energies.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 118
Author(s):  
Bhoomika Rajput ◽  
Ashwani Pandey

Blazars are known to emit exceptionally variable non-thermal emission over the wide range (from radio to γ-rays) of electromagnetic spectrum. We present here the results of our γ-ray flux and spectral variability study of the blazar Ton 599, which has been recently observed in the γ-ray flaring state. Using 0.1−300 GeV γ-ray data from the Fermi Gamma-ray Space Telescope (hereinafter Fermi), we generated one-day binned light curve of Ton 599 for a period of about one-year from MJD 59,093 to MJD 59,457. During this one year period, the maximum γ-ray flux detected was 2.24 ± 0.25 ×10−6 ph cm−2 s−1 at MJD 59,399.50. We identified three different flux states, namely, epoch A (quiescent), epoch B (pre-flare) and epoch C (main-flare). For each epoch, we calculated the γ-ray flux variability amplitude (Fvar) and found that the source showed largest flux variations in epoch C with Fvar∼ 35%. We modelled the γ-ray spectra for each epoch and found that the Log-parabola model adequately describes the γ-ray spectra for all the three epochs. We estimated the size of the γ-ray emitting region as 1.03 ×1018 cm and determined that the origin of γ-ray radiation, during the main-flare, could be outside of the broad line region.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yaron Ogen ◽  
Michael Denk ◽  
Cornelia Glaesser ◽  
Holger Eichstaedt ◽  
Rene Kahnt ◽  
...  

Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra. Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal component analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1% and 100%, respectively.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1112-1122
Author(s):  
Markus Böttcher

Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar physics, including diffusive shock acceleration, the theory of synchrotron radiation, the production of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper, describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport. This model has been very successful in modeling spectral variability patterns of several blazars, but has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild (≲ a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-mirror scenario, if no additional parameter changes are invoked.


2021 ◽  
Vol 2 (1) ◽  
pp. 21-25
Author(s):  
M.I. Fursyak ◽  
O.V. Kozlova

We present the results of long-term high-dispersion spectral observations (R = 20000) of the Ae Herbig star HD 36112 in the regions of the Ha emission line and the NaI D resonance doublet lines. They show that parameters of the Ha emission line demonstrate complicated variability on several time scales: 1) variability from night to night caused by inhomogeneity of the circumstellar envelope; 2) variability on a time scale of about 1200d characterized by a variation of the equivalent width, intensity, and other emission parameters; 3) variability on a time scale of more than 4000d observed as a many-year trend in variations of parameters of the Ha emission line. We associate these results with variability of physical and kinematic conditions in the inner regions of the accretion disk and wind. The most probable mechanism of this variability is a process of planet formation in the circumstellar disk.


Author(s):  
Ana P. Pinheiro ◽  
Andrey Anikin ◽  
Tatiana Conde ◽  
João Sarzedas ◽  
Sinead Chen ◽  
...  

The human voice is a primary tool for verbal and nonverbal communication. Studies on laughter emphasize a distinction between spontaneous laughter, which reflects a genuinely felt emotion, and volitional laughter, associated with more intentional communicative acts. Listeners can reliably differentiate the two. It remains unclear, however, if they can detect authenticity in other vocalizations, and whether authenticity determines the affective and social impressions that we form about others. Here, 137 participants listened to laughs and cries that could be spontaneous or volitional and rated them on authenticity, valence, arousal, trustworthiness and dominance. Bayesian mixed models indicated that listeners detect authenticity similarly well in laughter and crying. Speakers were also perceived to be more trustworthy, and in a higher arousal state, when their laughs and cries were spontaneous. Moreover, spontaneous laughs were evaluated as more positive than volitional ones, and we found that the same acoustic features predicted perceived authenticity and trustworthiness in laughter: high pitch, spectral variability and less voicing. For crying, associations between acoustic features and ratings were less reliable. These findings indicate that emotional authenticity shapes affective and social trait inferences from voices, and that the ability to detect authenticity in vocalizations is not limited to laughter. This article is part of the theme issue ‘Voice modulation: from origin and mechanism to social impact (Part I)’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munirah Alsaleh ◽  
Zoe Leftley ◽  
Thomas O’Connor ◽  
Thomas Hughes ◽  
Thomas A. Barbera ◽  
...  

AbstractPhenotypic diversity in urinary metabolomes of different geographical populations has been recognized recently. In this study, urinary metabolic signatures from Western (United Kingdom) and South-East Asian (Thai) cholangiocarcinoma patients were characterized to understand spectral variability due to host carcinogenic processes and/or exogenous differences (nutritional, environmental and pharmaceutical). Urinary liquid chromatography mass spectroscopy (LC–MS) spectral profiles from Thai (healthy = 20 and cholangiocarcinoma = 14) and UK cohorts (healthy = 22 and cholangiocarcinoma = 10) were obtained and modelled using chemometric data analysis. Healthy metabolome disparities between the two distinct populations were primarily related to differences in dietary practices and body composition. Metabolites excreted due to drug treatment were dominant in urine specimens from cholangiocarcinoma patients, particularly in Western individuals. Urine from participants with sporadic (UK) cholangiocarcinoma contained greater levels of a nucleotide metabolite (uridine/pseudouridine). Higher relative concentrations of 7-methylguanine were observed in urine specimens from Thai cholangiocarcinoma patients. The urinary excretion of hippurate and methyladenine (gut microbial-host co-metabolites) showed a similar pattern of lower levels in patients with malignant biliary tumours from both countries. Intrinsic (body weight and body composition) and extrinsic (xenobiotic metabolism) factors were the main causes of disparities between the two populations. Regardless of the underlying aetiology, biological perturbations associated with cholangiocarcinoma urine metabolome signatures appeared to be influenced by gut microbial community metabolism. Dysregulation in nucleotide metabolism was associated with sporadic cholangiocarcinoma, possibly indicating differences in mitochondrial energy production pathways between cholangiocarcinoma tumour subtypes. Mapping population-specific metabolic disparities may aid in interpretation of disease processes and identification of candidate biomarkers.


Sign in / Sign up

Export Citation Format

Share Document