A Variational Approach to Optimal Stopping Problems for Diffusion Processes

2009 ◽  
Vol 53 (3) ◽  
pp. 467-480 ◽  
Author(s):  
V. I. Arkin ◽  
A. D. Slastnikov
2017 ◽  
Vol 54 (3) ◽  
pp. 963-969 ◽  
Author(s):  
Vadim Arkin ◽  
Alexander Slastnikov

Abstract We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.


2012 ◽  
Vol 49 (2) ◽  
pp. 531-548 ◽  
Author(s):  
Yuan-Chung Sheu ◽  
Ming-Yao Tsai

In this paper we consider optimal stopping problems for a general class of reward functions under matrix-exponential jump-diffusion processes. Given an American call-type reward function in this class, following the averaging problem approach (see, for example, Alili and Kyprianou (2005), Kyprianou and Surya (2005), Novikov and Shiryaev (2007), and Surya (2007)), we give an explicit formula for solutions of the corresponding averaging problem. Based on this explicit formula, we obtain the optimal level and the value function for American call-type optimal stopping problems.


2012 ◽  
Vol 49 (02) ◽  
pp. 531-548
Author(s):  
Yuan-Chung Sheu ◽  
Ming-Yao Tsai

In this paper we consider optimal stopping problems for a general class of reward functions under matrix-exponential jump-diffusion processes. Given an American call-type reward function in this class, following the averaging problem approach (see, for example, Alili and Kyprianou (2005), Kyprianou and Surya (2005), Novikov and Shiryaev (2007), and Surya (2007)), we give an explicit formula for solutions of the corresponding averaging problem. Based on this explicit formula, we obtain the optimal level and the value function for American call-type optimal stopping problems.


2020 ◽  
Vol 178 (3-4) ◽  
pp. 1125-1172
Author(s):  
Julio Backhoff-Veraguas ◽  
Daniel Bartl ◽  
Mathias Beiglböck ◽  
Manu Eder

Abstract A number of researchers have introduced topological structures on the set of laws of stochastic processes. A unifying goal of these authors is to strengthen the usual weak topology in order to adequately capture the temporal structure of stochastic processes. Aldous defines an extended weak topology based on the weak convergence of prediction processes. In the economic literature, Hellwig introduced the information topology to study the stability of equilibrium problems. Bion–Nadal and Talay introduce a version of the Wasserstein distance between the laws of diffusion processes. Pflug and Pichler consider the nested distance (and the weak nested topology) to obtain continuity of stochastic multistage programming problems. These distances can be seen as a symmetrization of Lassalle’s causal transport problem, but there are also further natural ways to derive a topology from causal transport. Our main result is that all of these seemingly independent approaches define the same topology in finite discrete time. Moreover we show that this ‘weak adapted topology’ is characterized as the coarsest topology that guarantees continuity of optimal stopping problems for continuous bounded reward functions.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (03) ◽  
pp. 818-836 ◽  
Author(s):  
Luis H. R. Alvarez ◽  
Pekka Matomäki

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.


Sign in / Sign up

Export Citation Format

Share Document