Limit Theorems for Stopped Random Sequences II: Large Deviations

1997 ◽  
Vol 41 (1) ◽  
pp. 70-90 ◽  
Author(s):  
V. K. Malinovskii
2020 ◽  
Vol 30 (4) ◽  
pp. 215-241
Author(s):  
Gavriil A. Bakay ◽  
Aleksandr V. Shklyaev

AbstractLet (ξ(i), η(i)) ∈ ℝd+1, 1 ≤ i < ∞, be independent identically distributed random vectors, η(i) be nonnegative random variables, the vector (ξ(1), η(1)) satisfy the Cramer condition. On the base of renewal process, NT = max{k : η(1) + … + η(k) ≤ T} we define the generalized renewal process ZT = $\begin{array}{} \sum_{i=1}^{N_T} \end{array}$ξ(i). Put IΔT(x) = {y ∈ ℝd : xj ≤ yj < xj + ΔT, j = 1, …, d}. We find asymptotic formulas for the probabilities P(ZT ∈ IΔT(x)) as ΔT → 0 and P(ZT = x) in non-lattice and arithmetic cases, respectively, in a wide range of x values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of (ξ(1), η(1)) differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.


2014 ◽  
Vol 51 (03) ◽  
pp. 699-712 ◽  
Author(s):  
Lingjiong Zhu

In this paper we propose a stochastic process, which is a Cox-Ingersoll-Ross process with Hawkes jumps. It can be seen as a generalization of the classical Cox-Ingersoll-Ross process and the classical Hawkes process with exponential exciting function. Our model is a special case of the affine point processes. We obtain Laplace transforms and limit theorems, including the law of large numbers, central limit theorems, and large deviations.


2018 ◽  
Vol 61 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Lulu Fang ◽  
Min Wu

AbstractIn 1973, Williams [D. Williams, On Rényi's ‘record’ problem and Engel's series, Bull. London Math. Soc.5 (1973), 235–237] introduced two interesting discrete Markov processes, namely C-processes and A-processes, which are related to record times in statistics and Engel's series in number theory respectively. Moreover, he showed that these two processes share the same classical limit theorems, such as the law of large numbers, central limit theorem and law of the iterated logarithm. In this paper, we consider the large deviations for these two Markov processes, which indicate that there is a difference between C-processes and A-processes in the context of large deviations.


1994 ◽  
Vol 344 (1310) ◽  
pp. 383-390 ◽  

Algorithms that compare two proteins or DNA sequences and produce an alignment of the best matching segments are widely used in molecular biology. These algorithms produce scores that when comparing random sequences of length n grow proportional to n or to log (n) depending on the algorithm parameters. The Azuma-Hoeffding inequality gives an upper bound on the probability of large deviations of the score from its mean in the linear case. Poisson approximation can be applied in the logarithmic case.


Sign in / Sign up

Export Citation Format

Share Document