Adaptations in physiological properties of rat motor units following 5 weeks of whole-body vibration

2013 ◽  
Vol 38 (9) ◽  
pp. 913-921 ◽  
Author(s):  
Dawid Łochyński ◽  
Marcin Bączyk ◽  
Dominik Kaczmarek ◽  
Maria Jolanta Rędowicz ◽  
Jan Celichowski ◽  
...  

The purpose of the study was to determine the effects of 5-week whole-body vibration (WBV) on contractile parameters and force–frequency relationship of functionally isolated motor units of the rat medial gastrocnemius muscle: fast fatigable (FF), fast fatigue-resistant (FR), and slow (S). Moreover, myosin heavy chain isoform content was quantified. Following WBV, the maximum tetanic force of FF units was increased by ∼25%. The twitch half-relaxation time in all types of motor units and the twitch contraction time in FR units were shortened. The twitch-to-tetanus force ratio was decreased and the force–frequency curves were shifted rightwards in S and FR units. Myosin heavy chain distribution was not changed. These findings suggest modifications of the excitation–contraction coupling towards shortening of a twitch contraction. The observed increase in force of FF units may contribute to gains in muscle dynamic strength reported following WBV treatment.

2016 ◽  
Vol 121 (4) ◽  
pp. 858-869 ◽  
Author(s):  
Dawid Łochyński ◽  
Dominik Kaczmarek ◽  
Włodzimierz Mrówczyński ◽  
Wojciech Warchoł ◽  
Joanna Majerczak ◽  
...  

Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca2+pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca2+-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca2+-handling genes.


2013 ◽  
Vol 109 (11) ◽  
pp. 2705-2711 ◽  
Author(s):  
M. Bączyk ◽  
A. Hałuszka ◽  
W. Mrówczyński ◽  
J. Celichowski ◽  
P. Krutki

The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.


2009 ◽  
Vol 28 (6) ◽  
pp. 732-738 ◽  
Author(s):  
Barry P. Pereira ◽  
Hwan Chour Han ◽  
Zou Yu ◽  
Bee-Leng Tan ◽  
Zheng Ling ◽  
...  

1990 ◽  
Vol 259 (3) ◽  
pp. C507-C514 ◽  
Author(s):  
B. Jiang ◽  
R. R. Roy ◽  
V. R. Edgerton

The metabolic plasticity of single fibers in adult cat medial gastrocnemius (MG) 6 mo after complete spinal cord transection (Sp) at T12-T13 was studied. Some Sp cats were trained to weight support (Sp-WS) 30 min/day beginning 1 mo posttransection. Cross-sectional area, succinate dehydrogenase (SDH), alpha-glycerophosphate dehydrogenase (GPD), and myofibrillar adenosinetriphosphatase (ATPase) activities were determined in fibers identified in frozen serial sections. Fibers were categorized as light or dark based on myosin ATPase staining, alkaline preincubation. The percentage of dark ATPase fibers was higher in Sp and Sp-WS (approximately 85%) than in control (approximately 60%). All dark ATPase fibers reacted positively to a fast myosin heavy chain monoclonal antibody. In both spinal groups, a higher percentage of dark ATPase fibers reacted to both fast and slow myosin heavy chain antibodies than in controls. Neither Sp nor Sp-WS cats showed fiber atrophy. Compared with control, SDH activity was decreased in both fiber types of Sp cats. Daily weight-support training ameliorated this adaptation. There were no differences among the three groups in mean GPD and ATPase activities for either fiber type. There was a slight tendency, however, for spinal cats to have higher GPD and ATPase activities (independent of type) than control, probably reflecting the larger proportion of dark ATPase fibers in these cats. These observations indicate that 6 mo after spinalization in adult cats, some of the fibers of a fast muscle became "faster" and developed oxidative and glycolytic enzyme profiles that normally are exhibited in fast fatigable motor units.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Piotr Krutki ◽  
Włodzimierz Mrówczyński ◽  
Jan Celichowski ◽  
Marcin Bączyk

Whole-body vibration (WBV) is often applied as an alternative method for strength training or to prevent muscle force decrease. Previous studies indicated that WBV induced: 1) changes in the contractile parameters predominantly of fast motor units, 2) higher motoneuron excitability, and 3) higher motoneuron firing rates at lower stimulus intensities compared with the control. In this study, we evaluated the influence of WBV on Ia monosynaptic input from muscle spindles because the tonic vibration reflex is responsible for the enhancement of muscle activity observed after WBV. The aim was to answer the question of whether repeated activation of muscle spindles during WBV may result in altered synaptic excitation of motoneurons. WBV was performed on adult male Wistar rats, 5 days per week, for 5 weeks, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Fast-type medial gastrocnemius motoneurons were investigated intracellularly in deeply anesthetized animals in the experimental (n=7, 34 motoneurons) and control (n=7, 32 motoneurons) groups. Monosynaptic Ia EPSPs were evoked by electrical stimulation of afferent fibers from the synergistic lateral gastrocnemius and soleus muscles. Data were analyzed using a mixed linear model. WBV induced an increase of the mean EPSP amplitude by 28% (P=0.025), correlated with the resting membrane potential and input resistance, and a shortening of the mean EPSP rise time by 11% (P=0.012). The potentiation of synaptic excitation of motoneurons indicates that WBV may support rehabilitation or training processes aimed at increasing muscle strength on the basis of increased motoneuronal drive.


2017 ◽  
Vol 25 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Seong-won Han ◽  
Dae-yeon Lee ◽  
Dong-Sung Choi ◽  
Boram Han ◽  
Jin-Sun Kim ◽  
...  

This study aimed to examine whether muscle force and tendon stiffness in a muscle-tendon complex alter synchronously following 8-week whole-body vibration (WBV) training in older people. Forty older women aged 65 years and older were randomly assigned into control (CON, n = 15) and whole-body vibration (WBV) training groups (exposure time, n = 13; vibration intensity, n = 12). For the training groups, a 4-week detraining period was completed following the training period. Throughout the training/detraining period, force of the medial gastrocnemius (MG) muscle and stiffness of the Achilles tendon were assessed four times (0, 4, 8, and 12 weeks) using a combined system of dynamometer and ultrasonography. While muscle force gradually increased throughout the training period (p < .05), a significant increase in tendon stiffness was observed after 8 weeks (p < .05). These findings indicated that, during the early phase of WBV training, muscle force and tendon stiffness changed asynchronously, which might be a factor in possible musculotendinous injuries.


Sign in / Sign up

Export Citation Format

Share Document