Asynchronous Alterations of Muscle Force and Tendon Stiffness Following 8 Weeks of Resistance Exercise with Whole-Body Vibration in Older Women

2017 ◽  
Vol 25 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Seong-won Han ◽  
Dae-yeon Lee ◽  
Dong-Sung Choi ◽  
Boram Han ◽  
Jin-Sun Kim ◽  
...  

This study aimed to examine whether muscle force and tendon stiffness in a muscle-tendon complex alter synchronously following 8-week whole-body vibration (WBV) training in older people. Forty older women aged 65 years and older were randomly assigned into control (CON, n = 15) and whole-body vibration (WBV) training groups (exposure time, n = 13; vibration intensity, n = 12). For the training groups, a 4-week detraining period was completed following the training period. Throughout the training/detraining period, force of the medial gastrocnemius (MG) muscle and stiffness of the Achilles tendon were assessed four times (0, 4, 8, and 12 weeks) using a combined system of dynamometer and ultrasonography. While muscle force gradually increased throughout the training period (p < .05), a significant increase in tendon stiffness was observed after 8 weeks (p < .05). These findings indicated that, during the early phase of WBV training, muscle force and tendon stiffness changed asynchronously, which might be a factor in possible musculotendinous injuries.

2013 ◽  
Vol 38 (9) ◽  
pp. 913-921 ◽  
Author(s):  
Dawid Łochyński ◽  
Marcin Bączyk ◽  
Dominik Kaczmarek ◽  
Maria Jolanta Rędowicz ◽  
Jan Celichowski ◽  
...  

The purpose of the study was to determine the effects of 5-week whole-body vibration (WBV) on contractile parameters and force–frequency relationship of functionally isolated motor units of the rat medial gastrocnemius muscle: fast fatigable (FF), fast fatigue-resistant (FR), and slow (S). Moreover, myosin heavy chain isoform content was quantified. Following WBV, the maximum tetanic force of FF units was increased by ∼25%. The twitch half-relaxation time in all types of motor units and the twitch contraction time in FR units were shortened. The twitch-to-tetanus force ratio was decreased and the force–frequency curves were shifted rightwards in S and FR units. Myosin heavy chain distribution was not changed. These findings suggest modifications of the excitation–contraction coupling towards shortening of a twitch contraction. The observed increase in force of FF units may contribute to gains in muscle dynamic strength reported following WBV treatment.


Author(s):  
Piotr Krutki ◽  
Włodzimierz Mrówczyński ◽  
Jan Celichowski ◽  
Marcin Bączyk

Whole-body vibration (WBV) is often applied as an alternative method for strength training or to prevent muscle force decrease. Previous studies indicated that WBV induced: 1) changes in the contractile parameters predominantly of fast motor units, 2) higher motoneuron excitability, and 3) higher motoneuron firing rates at lower stimulus intensities compared with the control. In this study, we evaluated the influence of WBV on Ia monosynaptic input from muscle spindles because the tonic vibration reflex is responsible for the enhancement of muscle activity observed after WBV. The aim was to answer the question of whether repeated activation of muscle spindles during WBV may result in altered synaptic excitation of motoneurons. WBV was performed on adult male Wistar rats, 5 days per week, for 5 weeks, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Fast-type medial gastrocnemius motoneurons were investigated intracellularly in deeply anesthetized animals in the experimental (n=7, 34 motoneurons) and control (n=7, 32 motoneurons) groups. Monosynaptic Ia EPSPs were evoked by electrical stimulation of afferent fibers from the synergistic lateral gastrocnemius and soleus muscles. Data were analyzed using a mixed linear model. WBV induced an increase of the mean EPSP amplitude by 28% (P=0.025), correlated with the resting membrane potential and input resistance, and a shortening of the mean EPSP rise time by 11% (P=0.012). The potentiation of synaptic excitation of motoneurons indicates that WBV may support rehabilitation or training processes aimed at increasing muscle strength on the basis of increased motoneuronal drive.


Medicina ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 1037
Author(s):  
Shih-Ting Tsai ◽  
Cyuan-Fong Li ◽  
Kai-Chiao Chi ◽  
Li-Wei Ko ◽  
Cory Stevenson ◽  
...  

Background and Objectives: Whole body vibration is widely used to enhance muscle performance, but evidence of its effects on the tendon stiffness of the knee extensor tendon in stroke remains inconclusive. Our study was aimed to determine the difference in patellar and quadriceps tendon stiffness between hemiparetic and unaffected limbs in stroke patients and to investigate the immediate effect of whole body vibration on tendon stiffness. Materials and Methods: The patellar and quadriceps tendon stiffness of first-ever hemiplegic stroke patients was evaluated with elastography to compare the differences between hemiparetic and unaffected limbs. After one 20 min session of whole body vibration exercise in the standing position, tendon stiffness was again measured to evaluate the immediate effects of whole body vibration on tendon stiffness. Results: The results showed no significant differences in the tendon stiffness of the patellar and quadriceps tendons between hemiparetic and unaffected limbs. However, significant associations were found between the tendon stiffness of the patellar and quadriceps tendons and knee extensor spasticity on the hemiparetic side (ρ = 0.62; p = 0.044). There were no significant changes in tendon stiffness after a single session of whole body vibration. Conclusions: In conclusion, knee extensor tendon stiffness in hemiparetic limbs is positively correlated to the degree of knee extensor spasticity in stroke patients. However, a single session of whole body vibration does not alter tendon stiffness.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Alicia M. Goodwill ◽  
Dawson J. Kidgell

This study investigated whether the use of superimposed whole-body vibration (WBV) during cross-education strength training would optimise strength transfer compared to conventional cross-education strength training. Twenty-one healthy, dominant right leg volunteers (21±3years) were allocated to a strength training (ST,m=3,f=4), a strength training with WBV (ST + V,m=3,f=4), or a control group (no training,m=3,f=4). Training groups performed 9 sessions over 3 weeks, involving unilateral squats for the right leg, with or without WBV (35 Hz; 2.5 mm amplitude). All groups underwent dynamic single leg maximum strength testing (1RM) and single and paired pulse transcranial magnetic stimulation (TMS) prior to and following training. Strength increased in the trained limb for the ST (41%;ES=1.14) and ST + V (55%;ES=1.03) groups, which resulted in a 35% (ES=0.99) strength transfer to the untrained left leg for the ST group and a 52% (ES=0.97) strength transfer to the untrained leg for the ST + V group, when compared to the control group. No differences in strength transfer between training groups were observed(P=0.15). For the untrained leg, no differences in the peak height of recruitment curves or SICI were observed between ST and ST + V groups(P=1.00). Strength training with WBV does not appear to modulate the cross-transfer of strength to a greater magnitude when compared to conventional cross-education strength training.


2010 ◽  
Vol 24 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Jeffrey M McBride ◽  
James L Nuzzo ◽  
Andrea M Dayne ◽  
Michael A Israetel ◽  
David C Nieman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document