minor effect
Recently Published Documents


TOTAL DOCUMENTS

978
(FIVE YEARS 321)

H-INDEX

51
(FIVE YEARS 7)

Author(s):  
Noor Majid Raheem ◽  
Bushra Hassan Marouf

There are many metabolic and hormonal factors related to polycystic ovary syndrome (PCOS) that can be affected by vitamin D3 supplementation. To find clinical trials, in vivo studies, and in vitro studies that met the review's inclusion and exclusion criteria, we searched many databases. PCOS women's ovulation and metabolic parameters were examined in relation to the effects of vitamin D3 treatment on PCOS risk variables such as seasonal changes in body mass index, and obesity. The current review included twenty-five articles. Vitamin D3(25-hydroxy vitamin D) levels were significantly lower in the PCOS group than in the control group, and lipid profile and androgen hormone levels were significantly higher in the PCOS group, resulting in increased cardiovascular events and exaggerated hirsutism. According to the majority of research, vitamin D3 plays a beneficial role in decreasing the pathophysiology of PCOS, notably in restoring ovulation, which ultimately improves fertility. Although other studies found no effect on lipid profile, there was a minor effect on reducing cardiovascular risks. The response of patients to vitamin D3 was influenced by the dose administered and the study's methodology. In conclusion, vitamin D3 had a good effect on the pathophysiology of PCOS in the majority of investigations.  


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 200
Author(s):  
Christian Scheurer ◽  
Rafael E. Hincapie ◽  
Elisabeth Neubauer ◽  
Astrid Metz ◽  
Daniel Ness

We investigated the interaction of silica nanostructured particles and sandstone rock using various experimental approaches, such as fluid compatibility, batch sorption and single-phase core-floods. Diol and polyethylenglycol (PEG) surface-modified nanostructured silica materials were tested using two brines differing in ionic strength and with the addition of sodium carbonate (Na2CO3). Berea and Keuper outcrop materials (core plug and crushed samples) were used. Core-flood effluents were analysed to define changes in concentration and a rock’s retention compared to a tracer. Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) were performed to investigate changes in the effluent’s size distribution. Adsorption was evaluated using UV–visible spectroscopy and scanning electron microscopy (SEM). The highest adsorption was observed in brine with high ionic strength, whereas the use of alkali reduced the adsorption. The crushed material from Berea rock showed slightly higher adsorption compared to Keuper rock, whereas temperature had a minor effect on adsorption behaviour. In core-flood experiments, no effects on permeability have been observed. The used particles showed a delayed breakthrough compared to the tracer, and bigger particles passed the rock core faster. Nanoparticle recovery was significantly lower for PEG-modified nanomaterials in Berea compared to diol-modified nanomaterials, suggesting high adsorption. SEM images indicate that adsorption spots are defined via surface roughness rather than mineral type. Despite an excess of nanomaterials in the porous medium, monolayer adsorption was the prevailing type observed.


2022 ◽  
Author(s):  
Tanja Golke ◽  
Patrick Mucher ◽  
Patricia Schmidt ◽  
Astrid Radakovics ◽  
Manuela Repl ◽  
...  

Background: Peripheral blood mononuclear cells (PMBCs) are a versatile material for clinical routine as well as for research projects. However, their isolation via density gradient centrifugation is still time-consuming. When samples are taken beyond usual laboratory handling times, it may sometimes be necessary to pause the isolation process. Our aim was to evaluate the impact of delays up to 48 hours after the density gradient centrifugation on PBMC yield, purity and viability. Methods: PBMCs were isolated from samples of 20 donors, either with BD Vacutainer CPT tubes (CPT) or with the standard Ficoll method. Isolation was paused after initial density gradient centrifugation for 0, 24, or 48 hours. PBMC yield, purity and viability were compared. Results: The yield did not change significantly over time when CPT were used (55%/52%/47%), but did after isolation with the standard method (62%/40%[p<0.0001]/53%[p<0.01]). Purity was only affected if CPT were used (95%/93%[p=n.s./92%[p<0.05] vs. 97% for all time points with standard method). Whereas viable PBMCs decreased steadily for CPT isolates (62%/51%[p<0.001]/36%[p<0.0001]), after standard Ficoll gradient isolation, cell apoptosis was more pronounced already after 24h delay, and viability did not further decrease after 48h (64%/44%[p<0.0001]/40%[p<0.0001]). Conclusions: In conclusion, our data suggests that post-centrifugation delays of up to 48h might have only a minor effect on cell yield and purity. However, at the same time, a relevant decrease in cell viability was observed, which could be partially compensated by the use of CPT if the isolation was resumed latest the day after blood withdrawal.


2022 ◽  
Vol 924 (2) ◽  
pp. 56
Author(s):  
Alex Sicilia ◽  
Andrea Lapi ◽  
Lumen Boco ◽  
Mario Spera ◽  
Ugo N. Di Carlo ◽  
...  

Abstract This is the first paper in a series aimed at modeling the black hole (BH) mass function, from the stellar to the intermediate to the (super)massive regime. In the present work, we focus on stellar BHs and provide an ab initio computation of their mass function across cosmic times; we mainly consider the standard, and likely dominant, production channel of stellar-mass BHs constituted by isolated single/binary star evolution. Specifically, we exploit the state-of-the-art stellar and binary evolutionary code SEVN, and couple its outputs with redshift-dependent galaxy statistics and empirical scaling relations involving galaxy metallicity, star formation rate and stellar mass. The resulting relic mass function dN / dVd log m • as a function of the BH mass m • features a rather flat shape up to m • ≈ 50 M ⊙ and then a log-normal decline for larger masses, while its overall normalization at a given mass increases with decreasing redshift. We highlight the contribution to the local mass function from isolated stars evolving into BHs and from binary stellar systems ending up in single or binary BHs. We also include the distortion on the mass function induced by binary BH mergers, finding that it has a minor effect at the high-mass end. We estimate a local stellar BH relic mass density of ρ • ≈ 5 × 107 M ⊙ Mpc−3, which exceeds by more than two orders of magnitude that in supermassive BHs; this translates into an energy density parameter Ω• ≈ 4 × 10−4, implying that the total mass in stellar BHs amounts to ≲1% of the local baryonic matter. We show how our mass function for merging BH binaries compares with the recent estimates from gravitational wave observations by LIGO/Virgo, and discuss the possible implications for dynamical formation of BH binaries in dense environments like star clusters. We address the impact of adopting different binary stellar evolution codes (SEVN and COSMIC) on the mass function, and find the main differences to occur at the high-mass end, in connection with the numerical treatment of stellar binary evolution effects. We highlight that our results can provide a firm theoretical basis for a physically motivated light seed distribution at high redshift, to be implemented in semi-analytic and numerical models of BH formation and evolution. Finally, we stress that the present work can constitute a starting point to investigate the origin of heavy seeds and the growth of (super)massive BHs in high-redshift star-forming galaxies, that we will pursue in forthcoming papers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0262180
Author(s):  
Rossana Segreto ◽  
Hoda Bazafkan ◽  
Julia Millinger ◽  
Martina Schenk ◽  
Lea Atanasova ◽  
...  

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.


2021 ◽  
Vol 3 (4) ◽  
pp. 81-87
Author(s):  
Vladimir Klistorin

The paper considers the major theoretical concepts of the interrelation between higher education systems, science, technological system, and business in creating and disseminating innovations. The purpose of the paper is to consider motivations of the main actors of these systems and problems of interaction between them. Each of such systems creates its own institutions and types of organizations based on their missions. Initially, science had minor effect on creating and disseminating innovations, while higher education and scientific activities were closely linked to each other in European universities. Along with the spread ofhigher education, the links between science and the development of technology are becoming closer because of wider opportunities for information dissemination and appearance of new relevant institutions. It was the state who played a special role in the formation of our modern innovation system that brought new problems to the development of science and business. However, it is business who would play a main role in the creation of an effective innovation system. The development of science requires new subject areas, staff rotation, and discussions, as well as to enlighten the public.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 202
Author(s):  
Mitja Mori ◽  
Manuel Gutiérrez ◽  
Mihael Sekavčnik ◽  
Boštjan Drobnič

Mountain huts are stand-alone micro-grid systems that are not connected to a power grid. However, they impact the environment by generating electricity and through day-to-day operations. The installed generator needs to be flexible to cover fluctuations in the energy demand. Replacing fossil fuels with renewable energy sources presents a challenge when it comes to balancing electricity generation and consumption. This paper presents an integration-and-optimization process for renewable energy sources in a mountain hut’s electricity generation system combined with a lifecycle assessment. A custom computational model was developed, validated with experimental data and integrated into a TRNSYS model. Five different electricity generation topologies were modelled to find the best configuration that matches the dynamics and meets the cumulative electricity demand. A lifecycle assessment methodology was used to evaluate the environmental impacts of all the topologies for one typical operating year. The carbon footprint could be reduced by 34% in the case of the actually implemented system upgrade, and by up to 47% in the case of 100% renewable electricity generation. An investment cost analysis shows that improving the battery charging strategy has a minor effect on the payback time, but it can significantly reduce the environmental impacts.


2021 ◽  
Author(s):  
Andreas Fall ◽  
Marielle Henriksson ◽  
Anni Karppinen ◽  
Anne Opstad ◽  
Ellinor Bævre Heggset ◽  
...  

Abstract Cellulose nanofibrils, CNFs, show a great potential in many application areas. One main aspect limiting the use of the material is the slow and energy demanding dewatering of CNF suspensions. Here we investigate the dewatering with a piston press process. Three different CNF qualities, two laboratory grades (high and low charge) and one industrial grade (low charge) were tested. The chemical conditions were varied by changing salt concentration (NaCl) and pH. For the original suspensions, the dewatering rate is substantially slower for the high charge CNFs. However, by changing the conditions it dewatered as fast as the two low charge CNFs, even though salt/acid additions also improved dewatering rate for these two CNFs. Finally, by tuning the conditions fast dewatering could be obtained with only minor effect on strength and barrier performance of films prepared from the CNFs.


2021 ◽  
Author(s):  
Laure Chevalier ◽  
Harro Schmeling

Abstract. Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions and with different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host rock or not. To explore the physical parameters controlling thermal non-equilibrium the coupled heat equations for fluid and solid phases are formulated for a fluid migrating through a resting porous solid by Darcy flow. By non-dimensionalizing the equations three non-dimensional numbers can be identified controlling thermal non-equilibrium: the Peclet number Pe describing the fluid velocity, the heat transfer number A describing the local interfacial heat transfer from the fluid to the solid, and the porosity ϕ. The equations are solved numerically for the fluid and solid temperature evolution for a simple 1D model setup with constant flow velocity. Three stages are observed: a transient stage followed by a stage with maximum non-equilibrium fluid to solid temperature difference, ∆Tmax, and a stage approaching the steady state. A simplified time-independent ordinary differential equation for depth-dependent (Tf  – Ts) is derived and analytically solved. From these solutions simple scaling laws of the form (Tf  – Ts) = f (Pe, A, ϕ, H), where H is the non-dimensional model height, are derived. The solutions for ∆Tmax and the scaling laws are in good agreement with the numerical solutions. The parameter space Pe, A, ϕ, H is systematically explored. In the Pe – A – parameter space three regimes can be identified: 1) at high Pe (> 1) strong thermal non-equilibrium develops independently of Pe and A; 2) at low Pe (< 1) and low A (< 1) non-equilibrium decreases proportional to decreasing Pe; 3) at low Pe (<1) and large A (>1) non-equilbrium scales with Pe/A and thus becomes unimportant. The porosity ϕ has only a minor effect on thermal non-equilibrium. The time scales for reaching thermal non-equilibrium scale with the advective time-scale in the high Pe-regime and with the interfacial diffusion time in the other two low Pe – regimes. Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate orders of Pe and A. Plotting such typical ranges in the Pe – A regime diagram reveals that a) interstitial melt flow is in thermal equilibrium, b) melt channelling as e.g. revealed by dunite channels may reach moderate thermal non-equilibrium, and c) the dyke regime is at full thermal non-equilibrium.


2021 ◽  
Vol 21 (24) ◽  
pp. 18271-18281
Author(s):  
Michael A. Battaglia Jr. ◽  
Nicholas Balasus ◽  
Katherine Ball ◽  
Vanessa Caicedo ◽  
Ruben Delgado ◽  
...  

Abstract. Particle acidity (aerosol pH) is an important driver of atmospheric chemical processes and the resulting effects on human and environmental health. Understanding the factors that control aerosol pH is critical when enacting control strategies targeting specific outcomes. This study characterizes aerosol pH at a land–water transition site near Baltimore, MD, during summer 2018 as part of the second Ozone Water-Land Environmental Transition Study (OWLETS-2) field campaign. Inorganic fine-mode aerosol composition, gas-phase NH3 measurements, and all relevant meteorological parameters were used to characterize the effects of temperature, aerosol liquid water (ALW), and composition on predictions of aerosol pH. Temperature, the factor linked to the control of NH3 partitioning, was found to have the most significant effect on aerosol pH during OWLETS-2. Overall, pH varied with temperature at a rate of −0.047 K−1 across all observations, though the sensitivity was −0.085 K−1 for temperatures > 293 K. ALW had a minor effect on pH, except at the lowest ALW levels (< 1 µg m−3), which caused a significant increase in aerosol acidity (decrease in pH). Aerosol pH was generally insensitive to composition (SO42-, SO42-:NH4+, total NH3 (Tot-NH3) = NH3 + NH4+), consistent with recent studies in other locations. In a companion paper, the sources of episodic NH3 events (95th percentile concentrations, NH3 > 7.96 µg m−3) during the study are analyzed; aerosol pH was higher by only ∼ 0.1–0.2 pH units during these events compared to the study mean. A case study was analyzed to characterize the response of aerosol pH to nonvolatile cations (NVCs) during a period strongly influenced by primary Chesapeake Bay emissions. Depending on the method used, aerosol pH was estimated to be either weakly (∼ 0.1 pH unit change based on NH3 partitioning calculation) or strongly (∼ 1.4 pH unit change based on ISORROPIA thermodynamic model predictions) affected by NVCs. The case study suggests a strong pH gradient with size during the event and underscores the need to evaluate assumptions of aerosol mixing state applied to pH calculations. Unique features of this study, including the urban land–water transition site and the strong influence of NH3 emissions from both agricultural and industrial sources, add to the understanding of aerosol pH and its controlling factors in diverse environments.


Sign in / Sign up

Export Citation Format

Share Document