axillary meristems
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 119 (2) ◽  
pp. e2115871119
Author(s):  
Harry Klein ◽  
Joseph Gallagher ◽  
Edgar Demesa-Arevalo ◽  
María Jazmín Abraham-Juárez ◽  
Michelle Heeney ◽  
...  

Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2551
Author(s):  
Geoffrey E. Burrows

Gymnosperms are generally regarded as poor resprouters, especially when compared to angiosperms and particularly following major disturbance. However, is it this clear-cut? This review investigates two main aspects of gymnosperm resprouting: (i) various papers have provided exceptions to the above generalization—how frequent are these exceptions and are there any taxonomic trends?; and (ii) assuming gymnosperms are poor resprouters are there any anatomical or physiological reasons why this is the case? Five of six non-coniferous gymnosperm genera and 24 of 80 conifer genera had at least one species with a well-developed resprouting capability. This was a wider range than would be expected from the usual observation ‘gymnosperms are poor resprouters’. All conifer families had at least three resprouting genera, except the monospecific Sciadopityaceae. Apart from the aboveground stem, buds were also recorded arising from more specialised structures (e.g., lignotubers, tubers, burls and underground stems). In some larger genera it appeared that only a relatively small proportion of species were resprouters and often only when young. The poor resprouting performance of mature plants may stem from a high proportion of apparently ‘blank’ leaf axils. Axillary meristems have been recorded in a wide range of conifer species, but they often did not form an apical dome, leaf primordia or vascular connections. Buds or meristems that did form often abscised at an early stage. While this review has confirmed that conifers do not resprout to the same degree as angiosperms, it was found that a wide diversity of gymnosperm genera can recover vegetatively after substantial disturbance. Further structural studies are needed, especially of: (i) apparently blank leaf axils and the initial development of axillary meristems; (ii) specialised regeneration structures; and (iii) why high variability can occur in the resprouting capacity within species of a single genus and within genera of the same family.


2021 ◽  
Author(s):  
Kamal Tyagi ◽  
Anusha Sunkum ◽  
Meenakshi Rai ◽  
Supriya Sarma ◽  
Nidhi Thakur ◽  
...  

Micronutrient deficiency also termed hidden hunger affects a large segment of the human population, particularly in developing and underdeveloped nations. Tomato the second most consumed vegetable crop in the world after potato can serve as a sustainable source to alleviate micronutrient deficiency. In tomato, the mutations in the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate axillary meristems; however, its effect on fruit metabolome remains unexplored. The fruits of a new trifoliate (tf) allele (tf-5) were firmer, had higher Brix, folate, and carotenoids. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in homeostasis. The tf-5 allele enhanced the fruit firmness by suppressing cell wall softening-related proteins. The tf-5 fruit displayed a substantial increase in aminome, particularly γ-aminobutyric acid, with a parallel reduction in aminoacyl t-RNA synthases. The increased lipoxygenases proteins and transcripts seemingly elevated jasmonic acid. In addition, increased abscisic acid hydrolases transcripts coupled with reduced precursor supply lowered abscisic acid. The upregulation of carotenoids was mediated by modulation of methylerythreitol and plastoquinone pathways along with an increase in carotenoids isomerization proteins. The upregulation of folate in tf-5 was connoted by the increase in precursor p-aminobenzoic acid and transcripts of several folate biosynthesis pathway genes. The reduction in pterin-6-carboxylate and γ-glutamyl hydrolase activity indicated that the diminished folate degradation also enriched folate levels. Our study delineates that introgression of the tf-5 can be used for the γ-aminobutyric acid, carotenoids, and folate fortification of tomato.


2021 ◽  
Author(s):  
Harry Klein ◽  
Joseph Gallagher ◽  
Edgar Demesa-Arevalo ◽  
María Jazmín Abraham-Juárez ◽  
Michelle Heeney ◽  
...  

AbstractFloral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. In maize, carpels undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen, and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1; ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ~160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes, and show how an ancient developmental program was redeployed to sculpt floral form.


2021 ◽  
Author(s):  
Murat Aycan ◽  
Muhammet Cagri Oguz ◽  
Yasin Ozgen ◽  
Burak Onol ◽  
Mustafa Yildiz

Potato (Solanum tuberosum L.) is one of the major crops of the world. Significant improvements can be achieved in terms of yield and quality by the determination of efficient transformation methods. On the other hand, low transformation frequency seriously limits the application of molecular techniques in obtaining transgenic crops. In the present study, the effect of gamma radiation on Agrobacterium tumefaciens-mediated transformation to the potato was firstly investigated. Sterile seedlings of potato cv. ‘Marabel’, which was grown on Gamborg’s B5 medium in Magenta vessels, were irradiated with different gamma radiation doses (0-control, 40, 80, 120 Gy 60Co). Stem parts having axillary meristems were excised from irradiated seedlings and inoculated by A. tumefaciens (GV2260), which harbors the binary plasmid p35S GUS-INT contains and GUS (β-glucuronidase) gene controlled by 35S promoter (CaMV) and nptII (neomycin phosphotransferase II) gene driven by NOS (nopaline synthase) promoter). Inoculated stem parts having axillary meristems explants were then directly transported to a selection medium containing duocid (500 mg l−1), and kanamycin (100 mg l−1), 4 mg l−1 gibberellic acid, 1 mg l−1 BAP and 0.1 mg l−1 NAA. The adult transgenic plants were detected by polymerase chain reaction (PCR) analysis. According to the number of transgenic plants determined by PCR analysis, results obtained from explants treated with 40 Gy gamma gave the best results compared to the control (0 Gy) application. The doses over 40 Gy were also found statistically significant compared to the control (0 Gy). It is expected that the protocol described in this study make the transformation studies easier by skipping the stages of ‘co-cultivation’, ‘culturing explants on selection medium’ and ‘recovery of transgenic shoots on selection medium’ not only for potato but also for other crop plants. This study was supported by a grant from the Scientific and Technological Research Council of Turkey (TUBİTAK) (Grant number 113O280 to Prof. Dr. Mustafa YILDIZ).


2021 ◽  
Author(s):  
Jia Feng ◽  
Laichao Cheng ◽  
Zhenying Zhu ◽  
Feiqi Yu ◽  
Cheng Dai ◽  
...  

Abstract Axillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary buds and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown. Here, we identified and characterized loss of axillary meristems (lam), an EMS-induced mutant of the diploid woodland strawberry (Fragaria vesca) that lacked stamens in flowers and had reduced numbers of branch crowns and runners. The reduced branch crown and runner phenotypes were caused by a failure of axillary meristem initiation. The causative mutation of lam was located in FvH4_3g41310, which encodes a GRAS transcription factor, and was validated by a complementation test. lamCR mutants generated by CRISPR/Cas9 produced flowers without stamens and had fewer runners than the wild type. LAM was broadly expressed in meristematic tissues. Gibberellic acid (GA) application induced runner outgrowth from the remaining buds in lam, but failed to do so at the empty axils of lam. In contrast, treatment with the GA biosynthesis inhibitor paclobutrazol (PBZ) converted the runners into branch crowns. Moreover, genetic studies indicated that lam is epistatic to suppressor of runnerless (srl), a mutant of FveRGA1 in the gibberellic acid pathway, during runner formation. Our results demonstrate that LAM is required for stamen and runner formation and acts sequentially with GA from bud initiation to runner outgrowth, providing insights into the molecular regulation of these economically important organs in strawberry.


2020 ◽  
Author(s):  
Andrea Paterlini ◽  
Delfi Dorussen ◽  
Franziska Fichtner ◽  
Martin van Rongen ◽  
Ruth Delacruz ◽  
...  

AbstractThe plasticity of above ground plant architecture depends on the regulated re-activation and growth of axillary meristems laid down in the axils of leaves along the stem, which often arrest as dormant buds. Plasmodesmata connecting plant cells might control the movement of regulators involved in this developmental switch. Constructs capable of occluding these structures were employed in phloem cell types, because of the importance of phloem in local and systemic trafficking. We show that over-accumulation of callose within companion cells of the Arabidopsis inflorescence reduces the growth rates of activated buds, but does not affect bud activation. Growth rate reductions were not dependent on the phloem-mobile strigolactone receptor, which regulates bud activation. Furthermore, there was no correlation with early bud sugar profiles, which can also affect bud activity and depend on phloem-mediated delivery. It is therefore possible that an as yet unknown mobile signal is involved in modulating branch growth rate.


2020 ◽  
Author(s):  
Omid Karami ◽  
Arezoo Rahimi ◽  
Majid Khan ◽  
Marian Bemer ◽  
Rashmi R. Hazarika ◽  
...  

AbstractPost embryonic development and growth of flowering plants are for a large part determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. Here we identify a new role for the Arabidopsis AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in Arabidopsis and tobacco. Together our results indicate that AHL15 expression acts as a key molecular switch, directly downstream of flowering genes (SOC1, FUL) and upstream of GA biosynthesis, in extending the plant’s lifespan by suppressing AM maturation.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 599 ◽  
Author(s):  
Anne Mohrholz ◽  
Hequan Sun ◽  
Nina Glöckner ◽  
Sabine Hummel ◽  
Üner Kolukisaoglu ◽  
...  

The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY’s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.


Sign in / Sign up

Export Citation Format

Share Document