Combining Fixed-Location Count Data and Movement Data to Estimate Abundance of a Lake Sturgeon Spawning Run: A Framework for Riverine Migratory Species

Author(s):  
Lisa K Izzo ◽  
Gayle B. Zydlewski ◽  
Donna L Parrish

Estimating abundance of migrating fishes is challenging. While sonars can be deployed continuously, improper assumptions about unidirectional migration and complete spatial coverage can lead to inaccurate estimates. To address these challenges, we present a framework for combining fixed-location count data from a dual-frequency identification sonar (DIDSON) with movement data from acoustic telemetry to estimate spawning run abundance of lake sturgeon (Acipenser fulvescens). Acoustic telemetry data were used to estimate the probability of observing a lake sturgeon on the DIDSON and to determine the probability that a lake sturgeon passing the DIDSON site had passed the site previously during the season. Combining probabilities with DIDSON counts, using a Bayesian integrated model, we estimated the following abundances: 99 (42–215 CI) in 2017, 131 (82–248 CI) in 2018, and 92 (47–184 CI) in 2019. Adding movement data generated better inferences on count data by incorporating fish behavior (e.g., multiple migrations in a single season) and its uncertainty into abundance estimates. This framework can be applied to count and movement data to estimate abundance of spawning runs of other migratory fishes in riverine systems.

2019 ◽  
Vol 39 (5) ◽  
pp. 913-920
Author(s):  
Jonah L. Withers ◽  
Donald Einhouse ◽  
Michael Clancy ◽  
Lori Davis ◽  
Rachel Neuenhoff ◽  
...  

2006 ◽  
Vol 63 (3) ◽  
pp. 543-555 ◽  
Author(s):  
John A. Holmes ◽  
George M.W. Cronkite ◽  
Hermann J. Enzenhofer ◽  
Timothy J. Mulligan

Abstract The reliability of sockeye-salmon (Oncorhynchus nerka) count data collected by a dual-frequency, identification sonar (DIDSON) system is evaluated on the basis of comparisons with visual counts of unconstrained migrating salmon and visual counts of salmon constrained to passing through an enumeration fence. Regressions fitted to the DIDSON count data and the visual count data from the enumeration fence were statistically indistinguishable from a line with slope = 1.0 passing through the origin, which we interpret as agreement in both counts. In contrast, the regressions fitted to the DIDSON count data and the unconstrained visual count data had slopes that were significantly <1.0 (p < 0.001) and are consistent with an interpretation of systematic bias in these data. When counts of both unconstrained and constrained fish from the DIDSON system were ≥50 fish event−1, repeated counts of the DIDSON files were observed to produce the same counts 98–99% of the time, respectively, and based on the coefficient of variation, counts of individual passage events varied <3% on average. Therefore, the DIDSON count data exhibit high precision among different observers. As an enumeration fence provides a complete census of all fish passing through it, we conclude that fish-count data produced by the DIDSON imaging system are as accurate as visual counts of fish passing through an enumeration fence when counts range up to 932 fish event−1, the maximum count recorded during our study, regardless of the observer conducting the count. These conclusions should be applicable to typical riverine applications of the DIDSON system in which the bottom and surface boundaries are suitable for acoustic imaging, the migrating fish are adult salmon, and the transducer is carefully aimed so that the beams ensonify the area through which the salmon are migrating.


2013 ◽  
Vol 35 (2) ◽  
pp. 245 ◽  
Author(s):  
Josh Griffiths ◽  
Tom Kelly ◽  
Andrew Weeks

It has been suggested that platypuses (Ornithorhynchus anatinus) may avoid nets following capture, compromising abundance estimates using mark–recapture models. Here, we present the first direct evidence of net avoidance behaviour by the platypus. Using acoustic telemetry, we record a platypus bypassing several nets following capture. Understanding variation in capture probabilities will lead to better estimation of platypus abundance, which is currently lacking.


2013 ◽  
Vol 427-429 ◽  
pp. 1289-1292
Author(s):  
Yan Zhong Yu ◽  
Hua Nan Yang ◽  
Zhong Yi Huang

With the rapid development of RFID (radio frequency identification) application, the design requirements of RFID tag antenna are also increasing. A design of dual-frequency or multi-frequency tag antenna has become fashionable. In the present paper, we design a dual-band RFID tag antenna, which consists of a bent microstrip patch and rectangular microstrip patch. The designed antenna is analyzed and optimized by HFSS13. Simulation results indicate that the tag antenna has the characteristics of double band, high gain, and good radiation pattern.


Sign in / Sign up

Export Citation Format

Share Document