Net-avoidance behaviour in platypuses

2013 ◽  
Vol 35 (2) ◽  
pp. 245 ◽  
Author(s):  
Josh Griffiths ◽  
Tom Kelly ◽  
Andrew Weeks

It has been suggested that platypuses (Ornithorhynchus anatinus) may avoid nets following capture, compromising abundance estimates using mark–recapture models. Here, we present the first direct evidence of net avoidance behaviour by the platypus. Using acoustic telemetry, we record a platypus bypassing several nets following capture. Understanding variation in capture probabilities will lead to better estimation of platypus abundance, which is currently lacking.

2019 ◽  
Vol 39 (5) ◽  
pp. 913-920
Author(s):  
Jonah L. Withers ◽  
Donald Einhouse ◽  
Michael Clancy ◽  
Lori Davis ◽  
Rachel Neuenhoff ◽  
...  

Oecologia ◽  
2015 ◽  
Vol 178 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Christine L. Dudgeon ◽  
Kenneth H. Pollock ◽  
J. Matias Braccini ◽  
Jayson M. Semmens ◽  
Adam Barnett

2021 ◽  
Vol 52 ◽  
pp. 39-47
Author(s):  
Austin Flanigan ◽  
◽  
Noah Perlut ◽  
James Sulikowski

Abundance estimates are essential for fisheries management, but estimating the abundance of open populations with low recapture rates has historically been unreliable. However, by using mark-recapture data modulated with survivability parameters obtained from analysis of acoustic telemetry data, more accurate abundance estimates can be made for species that exhibit these characteristics. One such species is the Atlantic sturgeon, for which abundance estimates were designated a research priority following precipitous population declines throughout the 20th century. We addressed this research need in the Saco River Estuary (SRE), a system where the Atlantic sturgeon has been extensively studied using mark-recapture and acoustic telemetry methods since 2009. These data were analyzed using Bayesian analysis of a Lincoln-Peterson estimator, constrained with parameters from a Cormack-Jolly-Seber model, to provide an initial abundance estimate for the system. The resulting estimate indicated that approximately 3 299 (95% Credible Interval: 1 462–6 828) Atlantic sturgeon utilize the SRE yearly, suggesting that the SRE provides critical foraging habitat to a large contingent of the species within the Gulf of Maine. The present study demonstrated the method utilized herein was effective in generating a reasonable estimate of abundance in an open system where recapture events are rare, and therefore may provide a valuable technique for supplying initial estimates of fish abundance in additional systems that display similar characteristics.


Author(s):  
Tyler Pilger ◽  
Matthew Peterson ◽  
Dana Lee ◽  
Andrea Fuller ◽  
Doug Demko

Conservation and management of culturally and economically important species rely on monitoring programs to provide accurate and robust estimates of population size. Rotary screw traps (RSTs) are often used to monitor populations of anadromous fish, including fall-run Chinook Salmon (Oncorhynchus tshawytscha) in California’s Central Valley. Abundance estimates from RST data depend on estimating a trap's efficiency via mark-recapture releases. Because efficiency estimates are highly variable and influenced by many factors, abundance estimates can be highly uncertain. An additional complication is the multiple accepted methods for how to apply a limited number of trap efficiency estimates, each from discrete time-periods, to a population’s downstream migration, which can span months. Yet, few studies have evaluated these different methods, particularly with long-term monitoring programs. We used 21 years of mark-recapture data and RST catch of juvenile fall-run Chinook Salmon on the Stanislaus River, California, to investigate factors associated with trap efficiency variability across years and mark-recapture releases. We compared annual abundance estimates across five methods that differed in treatment of trap efficiency (stratified versus modeled) and statistical approach (frequentist versus Bayesian) to assess the variability of estimates across methods, and to evaluate whether method affected trends in estimated abundance. Consistent with short-term studies, we observed negative associations between estimated trap efficiency and river discharge as well as fish size. Abundance estimates were robust across all methods, frequently having overlapping confidence intervals. Abundance trends, for the number of increases and decreases from year to year, did not differ across methods. Estimated juvenile abundances were significantly related to adult escapement counts, and the relationship did not depend on estimation method. Understanding the sources of uncertainty related to abundance estimates is necessary to ensure that high-quality estimates are used in life cycle and stock-recruitment modeling.


Author(s):  
Lisa K Izzo ◽  
Gayle B. Zydlewski ◽  
Donna L Parrish

Estimating abundance of migrating fishes is challenging. While sonars can be deployed continuously, improper assumptions about unidirectional migration and complete spatial coverage can lead to inaccurate estimates. To address these challenges, we present a framework for combining fixed-location count data from a dual-frequency identification sonar (DIDSON) with movement data from acoustic telemetry to estimate spawning run abundance of lake sturgeon (Acipenser fulvescens). Acoustic telemetry data were used to estimate the probability of observing a lake sturgeon on the DIDSON and to determine the probability that a lake sturgeon passing the DIDSON site had passed the site previously during the season. Combining probabilities with DIDSON counts, using a Bayesian integrated model, we estimated the following abundances: 99 (42–215 CI) in 2017, 131 (82–248 CI) in 2018, and 92 (47–184 CI) in 2019. Adding movement data generated better inferences on count data by incorporating fish behavior (e.g., multiple migrations in a single season) and its uncertainty into abundance estimates. This framework can be applied to count and movement data to estimate abundance of spawning runs of other migratory fishes in riverine systems.


2018 ◽  
Vol 45 (5) ◽  
pp. 446 ◽  
Author(s):  
John D. Willson ◽  
Shannon E. Pittman ◽  
Jeffrey C. Beane ◽  
Tracey D. Tuberville

Context Accurate estimates of population density are a critical component of effective wildlife conservation and management. However, many snake species are so secretive that their density cannot be determined using traditional methods such as capture–mark–recapture. Thus, the status of most terrestrial snake populations remains completely unknown. Aim We developed a novel simulation-based technique for estimating density of secretive snakes that combined behavioural observations of snake road-crossing behaviour (crossing speed), effort-corrected road-survey data, and simulations of spatial movement patterns derived from radio-telemetry, without relying on mark–recapture. Methods We used radio-telemetry data to parameterise individual-based movement models that estimate the frequency with which individual snakes cross roads and used information on survey vehicle speed and snake crossing speed to determine the probability of detecting a snake, given that it crosses the road transect during a survey. Snake encounter frequencies during systematic road surveys were then interpreted in light of detection probabilities and simulation model results to estimate snake densities and to assess various factors likely to affect abundance estimates. We demonstrated the broad applicability of this approach through a case study of the imperiled southern hognose snake (Heterodon simus) in the North Carolina (USA) Sandhills. Key results We estimated that H. simus occurs at average densities of 0.17 ha–1 in the North Carolina Sandhills and explored the sensitivity of this estimate to assumptions and variation in model parameters. Conclusions Our novel method allowed us to generate the first abundance estimates for H. simus. We found that H. simus exists at low densities relative to congeners and other mid-sized snake species, raising concern that this species may not only have declined in geographic range, but may also occur at low densities or be declining in their strongholds, such as the North Carolina Sandhills. Implications We present a framework for estimating density of species that have traditionally been considered too secretive to study at the population level. This method will greatly enhance our ability to study and manage a wide variety of snake species and could be applied to other secretive wildlife species that are most frequently encountered during road surveys.


2011 ◽  
Vol 62 (7) ◽  
pp. 835 ◽  
Author(s):  
Daniel C. Gwinn ◽  
Paul Brown ◽  
Jakob C. Tetzlaff ◽  
Mike S. Allen

Sampling designs for effective monitoring programs are often specific to individual systems and management needs. Failure to carefully evaluate sampling designs of monitoring programs can lead to data that are ineffective for informing management objectives. We demonstrated the use of an individual-based model to evaluate closed-population mark–recapture sampling designs for monitoring fish abundance in open systems, using Murray cod (Maccullochella peelii (Mitchell, 1838)) in the Murray–Darling River basin, Australia, as an example. The model used home-range, capture-probability and abundance estimates to evaluate the influence of the size of the sampling area and the number of sampling events on bias and precision of mark–recapture abundance estimates. Simulation results indicated a trade-off between the number of sampling events and the size of the sampling reach such that investigators could employ large sampling areas with relatively few sampling events, or smaller sampling areas with more sampling events to produce acceptably accurate and precise abundance estimates. The current paper presents a framework for evaluating parameter bias resulting from migration when applying closed-population mark–recapture models to open populations and demonstrates the use of simulation approaches for informing efficient and effective monitoring-program design.


Sign in / Sign up

Export Citation Format

Share Document