Short- and long-term growth characteristics associated with tree mortality in southwestern mixed-conifer forests

2014 ◽  
Vol 44 (10) ◽  
pp. 1227-1235 ◽  
Author(s):  
Jeffrey M. Kane ◽  
Thomas E. Kolb

Continued increases in global temperatures and incidences of drought have been implicated in elevated tree mortality in many regions, prompting interest in better understanding tree mortality processes. A recent extreme drought in the southwestern U.S. (1996–2003) contributed to elevated tree mortality throughout the region. We used this event to investigate the relationship of short- and long-term tree growth characteristics to recent (1996–2008) tree mortality in the mixed-conifer forests in northern Arizona. We compared radial growth characteristics over a 50-year period between paired live and recently dead white fir (Abies concolor (Gordon & Glend.) Lindl. ex Hildebr.), limber pine (Pinus flexilis E. James), trembling aspen (Populus tremuloides Michx.), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). We found that (i) dead trees of all species typically had lower mean growth rates than live trees, (ii) dead trees of most species had a greater coefficient of variation in growth over long time periods (>20 years) than live trees, (iii) dead aspen and dead Douglas-fir trees had larger negative growth trends than live trees for some time periods, (iv) dead trees of most species had larger numbers of abrupt growth declines than live trees, and (v) a combination of short- and long-term growth characteristics distinguished live and dead trees, with greater importance of short-term growth for aspen, long-term growth for limber pine, and a mix of short- and long-term growth for white fir and Douglas-fir. These results strongly suggest that recent tree mortality in southwestern mixed-conifer forests is caused by a mixture of short- and long-term processes.

2015 ◽  
Vol 353 ◽  
pp. 136-147 ◽  
Author(s):  
Stella J.M. Cousins ◽  
John J. Battles ◽  
John E. Sanders ◽  
Robert A. York

2015 ◽  
Vol 24 (4) ◽  
pp. 495 ◽  
Author(s):  
Anna M. Higgins ◽  
Kristen M. Waring ◽  
Andrea E. Thode

Over a century of fire exclusion in frequent-fire ponderosa pine and dry mixed conifer forests has resulted in increased tree densities, heavy surface fuel accumulations and an increase in late successional, fire-intolerant trees. Grand Canyon National Park uses prescribed fires and wildfires to reduce fire hazard and restore ecosystem processes. Research is needed to determine post-fire vegetation response thus enabling future forest succession predictions. Our study focussed on the effects of burn entry and burn severity on species composition and regeneration in two forest types: ponderosa pine with white fir encroachment and dry mixed conifer. We found no difference in tree composition and structure in a single, low-severity burn compared with unburned areas in the white fir encroachment forest type. We found no white fir seedlings or saplings in a second-entry, low-severity burn in the white fir encroachment forest type. Second-entry burns were effective in reducing white fir densities in the white fir encroachment forest type. There was significant aspen regeneration following high-severity fire in the dry mixed conifer forest type. This research suggests that repeated entries and an increase in burn severity may be necessary for prescribed fire or wildfire to be effective in meeting management objectives.


2016 ◽  
Vol 361 ◽  
pp. 23-37 ◽  
Author(s):  
Kate A. Clyatt ◽  
Justin S. Crotteau ◽  
Michael S. Schaedel ◽  
Haley L. Wiggins ◽  
Harold Kelley ◽  
...  

1988 ◽  
Vol 18 (9) ◽  
pp. 1136-1144 ◽  
Author(s):  
Thomas J. Stohlgren

The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p < 0.05), lignin concentration (r2 = 0.92, p < 0.05), and acid detergent fiber concentration (r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.


Sign in / Sign up

Export Citation Format

Share Document