scholarly journals SGE1 is involved in conidiation and pathogenicity of Fusarium oxysporum f.sp. cubense

2018 ◽  
Vol 64 (5) ◽  
pp. 349-357 ◽  
Author(s):  
Xingrong Hou ◽  
Bang An ◽  
Qiannan Wang ◽  
Yunfeng Guo ◽  
Hongli Luo ◽  
...  

The ascomycete fungus Fusarium oxysporum f.sp. cubense race 4 (Foc TR4) causes vascular wilt diseases in banana (Musa spp.). In the present study, the role of SGE1 in regulating growth, conidiation, and pathogenicity of Foc TR4 was investigated. Deletion of SGE1 did not influence vegetative growth but impaired the conidiation of Foc TR4. Besides, the SGE1 deletion mutant basically lost pathogenicity on banana plantlets. Observation under the microscope indicated that the penetration and colonization processes were severely impaired in the SGE1 deletion mutant. Proteomics analysis suggested that SGE1 regulated the production of a series of proteins of Foc TR4. Taken together, our results suggest that SGE1 plays an important role in regulating conidiation and pathogenicity in fungal pathogen Foc TR4.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0250064
Author(s):  
Hui Zhou ◽  
Yueqiang Xu ◽  
Frank Ebel ◽  
Cheng Jin

The ascomycete fungus Fusarium oxysporum f.sp. cucumerinum causes vascular wilt diseases in cucumber. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. BLASTp searches of the Aspergillus fumigatus UgmA and galatofuranosyltransferases (Galf-transferases) sequences in the F. oxysporum genome identified two genes encoding putative UDP-galactopyranose mutase (UGM), ugmA and ugmB, and six genes encoding putative Galf-transferase homologs. In this study, the single and double mutants of the ugmA, ugmB and gfsB were obtained. The roles of UGMs and GfsB were investigated by analyzing the phenotypes of the mutants. Our results showed that deletion of the ugmA gene led to a reduced production of galactofuranose-containing sugar chains, reduced growth and impaired conidiation of F. oxysporum f.sp. cucumerinum. Most importantly, the ugmA deletion mutant lost the pathogenicity in cucumber plantlets. Although deletion of the ugmB gene did not cause any visible phenotype, deletion of both ugmA and ugmB genes caused more severe phenotypes as compared with the ΔugmA, suggesting that UgmA and UgmB are redundant and they can both contribute to synthesis of UDP-Galf. Furthermore, the ΔgfsB exhibited an attenuated virulence although no other phenotype was observed. Our results demonstrate that the galactofuranose (Galf) synthesis contributes to the cell wall integrity, germination, hyphal growth, conidiation and virulence in Fusarium oxysporum f.sp. cucumerinum and an ideal target for the development of new anti-Fusarium agents.


1999 ◽  
Vol 79 (3) ◽  
pp. 351-356 ◽  
Author(s):  
B. C. Venuto ◽  
R. R. Smith ◽  
C. R. Grau

In Wisconsin, Fusarium oxysporum, Schlect., a pathogen causing vascular wilt, is the most prevalent fungal pathogen recovered from diseased red clover (Trifolium pratense L.) plants. This study was conducted to determine the mode of inheritance for red clover resistance to this pathogen and to develop resistant germplasm. Virulent isolates of this pathogen, collected from red clover plants at the Ashland Research Station, Ashland, Wisconsin, were used to screen three populations, the red clover cultivars Arlington and Marathon and the C11 germplasm, for resistant plants. Plants were inoculated with the pathogen and evaluated for reaction, using a disease-severity index (DSI) score from 1 to 5 (1 = no reaction, 5 = plant dead). Selected plants from each cycle were intercrossed to produce subsequent generations. After two and three cycles of selection, the developed populations were simultaneously evaluated for gain from selection. The gain from selection for resistance in these populations (cycle 0 minus cycle 2) ranged from 0.31 to 0.48, 0.12 to 0.75, and 0.13 to 0.83 DSI units, respectively, for Arlington, Marathon, and C11. Estimated narrow-sense heritabilities, based on cycle-1 and cycle-2 progeny, were, respectively, 0.20 and 0.37 for Arlington, 0.15 and 0.13 for Marathon, and 0.06 and 0.17 for C11. These results indicate that resistance is a quantitative trait controlled by many loci, each contributing some portion to overall resistance in the host. Key words: Red clover, Trifolium pratense L., Fusarium oxysporum, vascular wilt, resistance


2022 ◽  
Author(s):  
Huoqing Huang ◽  
Xiaoxia Zhang ◽  
Yong Zhang ◽  
Ganjun Yi ◽  
Jianghui Xie ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 180
Author(s):  
Rebecca Lyons ◽  
Elizabeth Czislowski ◽  
Isabel Zeil-Rolfe ◽  
Shubhdeep Kaur ◽  
Zhendong Liu ◽  
...  

Members of the Fusarium oxysporum species complex include pathogenic and non-pathogenic isolates and infect a broad range of plant species. F. oxysporum f. sp. cubense (Foc) causes the destructive Fusarium wilt of banana, and the recently emerged Foc tropical race 4 strain threatens the global banana industry. Secreted in xylem (SIX) genes encode for F. oxysporum effector proteins that are associated with virulence in pathogenic F. oxysporum, however they have rarely been reported from non-pathogenic F. oxysporum isolates. Our recent survey of asymptomatic banana plants grown in Foc-infested fields in Queensland and northern NSW revealed that diverse Fusarium spp, including F. oxysporum, reside in the plant roots and pseudostem without causing obvious damage to the plant. Intriguingly, we amplified SIX genes from several of the putative endophytic F. oxysporum isolates identified in the survey and found that they differ in their profile to known Foc SIX genes. To study the role of the endophytic F. oxysporum isolates in planta and the biological function of their SIX genes in more detail, we will re-inoculate cultivated and wild diploid banana lines with the endophytic F. oxysporum strains under glasshouse conditions to assess if they are non-pathogenic on banana. Secondly, we will determine whether the endophytic F. oxysporum SIX genes are expressed in planta and/or in vitro and look at the transcriptome changes occurring in the host following infection. Finally, endophytic F. oxysporum strains transformed with GFP will be used to investigate the extent of fungal colonisation in the plant.


2015 ◽  
Vol 163 (10) ◽  
pp. 807-817 ◽  
Author(s):  
Lijia Guo ◽  
Laying Yang ◽  
Changcong Liang ◽  
Guofen Wang ◽  
Qingdon Dai ◽  
...  

2018 ◽  
Vol 151 (3) ◽  
pp. 723-734 ◽  
Author(s):  
Cunwu Zuo ◽  
Guiming Deng ◽  
Bin Li ◽  
Heqiang Huo ◽  
Chunyu Li ◽  
...  

2019 ◽  
Vol 32 (10) ◽  
pp. 1270-1272 ◽  
Author(s):  
Yingzi Yun ◽  
Aixia Song ◽  
JianDong Bao ◽  
Shasha Chen ◽  
Songmao Lu ◽  
...  

Fusarium wilt of banana is caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. cubense. We generated two chromosome-level assemblies of F. oxysporum f. sp. cubense race 1 and tropical race 4 strains using single-molecule real-time sequencing. The F. oxysporum f. sp. cubense race 1 and tropical race 4 assemblies had 35 and 29 contigs with contig N50 lengths of 2.08 and 4.28 Mb, respectively. These two new references genomes represent a greater than 100-fold improvement over the contig N50 statistics of the previous short-read-based F. oxysporum f. sp. cubense assemblies. The two high-quality assemblies reported here will be a valuable resource for the comparative analysis of F. oxysporum f. sp. cubense races at the pathogenic level.


Sign in / Sign up

Export Citation Format

Share Document