Structural phase transition, electronic, elastic, and vibrational properties of LiAl intermetallic compound: insights from first-principles calculations

2017 ◽  
Vol 95 (8) ◽  
pp. 691-698
Author(s):  
Y. Mogulkoc ◽  
Y.O. Ciftci ◽  
G. Surucu

Using the first-principles calculations based on density functional theory (DFT), the structural, elastic, electronic, and vibrational properties of LiAl have been explored within the generalized gradient approximation (GGA) using the Vienna ab initio simulation package (VASP). The results demonstrate that LiAl compound is stable in the NaTl-type structure (B32) at ambient pressure, which is in good agreement with the experimental results and there is a structural phase transition from NaTl-type structure (B32) to CsCl-type structure (B2) at around 22.2 GPa pressure value. The pressure effects on the elastic properties have been discussed and the elastic property calculation indicates that the elastic instability could provide a phase transition driving force according to the variations relation of the elastic constant versus pressure. To gain further information about this, we also have investigated the other elastic parameters (i.e., Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and isotropic shear modulus). The electronic band structure, total and partial density of states, phonon dispersion curves, and one-phonon density of states of B2 and B32 phases are also presented with results.

2018 ◽  
Vol 20 (14) ◽  
pp. 9488-9497 ◽  
Author(s):  
Pornmongkol Jimlim ◽  
Komsilp Kotmool ◽  
Udomsilp Pinsook ◽  
Suttichai Assabumrungrat ◽  
Rajeev Ahuja ◽  
...  

The structural phase transition and electronic properties of Li2O2 under pressures up to 500 GPa have been investigated using first-principles calculations.


2008 ◽  
Vol 69 (5-6) ◽  
pp. 1353-1355 ◽  
Author(s):  
Atsushi Honda ◽  
Shin’ichi Higai ◽  
Nobuyuki Wada ◽  
Yukio Sakabe

CrystEngComm ◽  
2018 ◽  
Vol 20 (39) ◽  
pp. 5949-5954 ◽  
Author(s):  
Chun-Mei Hao ◽  
Yunguo Li ◽  
Qiang Zhu ◽  
Xin-Yi Chen ◽  
Zhan-Xin Wang ◽  
...  

The structural, dynamic, elastic, and electronic properties of Li4Ge were investigated by means of evolutionary crystal structure prediction in conjunction with first-principles calculations.


2014 ◽  
Vol 577 ◽  
pp. 102-107
Author(s):  
Qiu Xiang Liu ◽  
De Ping Lu ◽  
Rui Jun Zhang ◽  
Lei Lu ◽  
Shi Fang Xie

The structural stability of MgCe under high pressures has been investigated by using the first-principles plane-wave pseudopotential density functional theory within the local density approximation (LDA). The obtained results predict that MgCe in the Ba structure is predicted to be the most stable structure corresponding to the ground state, because of lowest total energy. MgCe undergoes a pressure-induced phase transition from the Ba structure to B32 structure at 36 GPa. And no further transition is found up to 120 GPa. In addition, the electronic structures of four structures of MgCe are also calculated and discussed.


2013 ◽  
Vol 331 ◽  
pp. 563-566 ◽  
Author(s):  
Xiao Cui Yang ◽  
Fang Liu ◽  
Xiang Yi Luo ◽  
Hong Yu Lin ◽  
Jun Ping Xiao

An investigation on the electronic structures and structural stability of LaN under high pressure has been conducted using first-principles calculations based on density functional theory (DFT). At elevated pressures LaN is predicted to undergo a structural phase transition from NaCl-type to CsCl-type structure. The predicted transition pressure is 65 GPa. The result of elastic constants indicates that the NaCl-type structure is mechanically a stable structure and the CsCl-type strcture is not mechanically a stable one. The calculated band structure of LaN is semimetallic.the conduction and valence bands.


Sign in / Sign up

Export Citation Format

Share Document