First-Principles Calculations of Electronic and Structural Properties of LaN under High Pressure

2013 ◽  
Vol 331 ◽  
pp. 563-566 ◽  
Author(s):  
Xiao Cui Yang ◽  
Fang Liu ◽  
Xiang Yi Luo ◽  
Hong Yu Lin ◽  
Jun Ping Xiao

An investigation on the electronic structures and structural stability of LaN under high pressure has been conducted using first-principles calculations based on density functional theory (DFT). At elevated pressures LaN is predicted to undergo a structural phase transition from NaCl-type to CsCl-type structure. The predicted transition pressure is 65 GPa. The result of elastic constants indicates that the NaCl-type structure is mechanically a stable structure and the CsCl-type strcture is not mechanically a stable one. The calculated band structure of LaN is semimetallic.the conduction and valence bands.

2012 ◽  
Vol 550-553 ◽  
pp. 2805-2809 ◽  
Author(s):  
Ai Min Hao ◽  
Xiao Cui Yang ◽  
Li Xin Zhang ◽  
Qi Zhou Zhang

An investigation on electronic, elastic and thermodynamic properties of VN under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. At elevated pressures VN is predicted to undergo a structural phase transition from the relatively open NaCl-type structure into the denser CsCl-type atomic arrangement. The predicted transition pressure is 189 GPa. The elastic constants, Debye temperature as a function of pressure and temperature of VN are presented.


2013 ◽  
Vol 690-693 ◽  
pp. 559-563 ◽  
Author(s):  
Xiao Cui Yang ◽  
En Jie Zhang ◽  
Hong Yuan Ma ◽  
Jun Ping Xiao

An investigation on structural stability of LuN under high pressure has been conducted using first-principles calculations. At elevated pressures LuN is predicted to undergo a phase transition from NaCl-type structure (B1) into CsCl-type structure (B2). The predicted transition pressure is 220 GPa. The phonon dispersion curves of B1 and B2 at 0 and 220 GPa are presented.


2017 ◽  
Vol 95 (8) ◽  
pp. 691-698
Author(s):  
Y. Mogulkoc ◽  
Y.O. Ciftci ◽  
G. Surucu

Using the first-principles calculations based on density functional theory (DFT), the structural, elastic, electronic, and vibrational properties of LiAl have been explored within the generalized gradient approximation (GGA) using the Vienna ab initio simulation package (VASP). The results demonstrate that LiAl compound is stable in the NaTl-type structure (B32) at ambient pressure, which is in good agreement with the experimental results and there is a structural phase transition from NaTl-type structure (B32) to CsCl-type structure (B2) at around 22.2 GPa pressure value. The pressure effects on the elastic properties have been discussed and the elastic property calculation indicates that the elastic instability could provide a phase transition driving force according to the variations relation of the elastic constant versus pressure. To gain further information about this, we also have investigated the other elastic parameters (i.e., Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and isotropic shear modulus). The electronic band structure, total and partial density of states, phonon dispersion curves, and one-phonon density of states of B2 and B32 phases are also presented with results.


2014 ◽  
Vol 577 ◽  
pp. 102-107
Author(s):  
Qiu Xiang Liu ◽  
De Ping Lu ◽  
Rui Jun Zhang ◽  
Lei Lu ◽  
Shi Fang Xie

The structural stability of MgCe under high pressures has been investigated by using the first-principles plane-wave pseudopotential density functional theory within the local density approximation (LDA). The obtained results predict that MgCe in the Ba structure is predicted to be the most stable structure corresponding to the ground state, because of lowest total energy. MgCe undergoes a pressure-induced phase transition from the Ba structure to B32 structure at 36 GPa. And no further transition is found up to 120 GPa. In addition, the electronic structures of four structures of MgCe are also calculated and discussed.


RSC Advances ◽  
2020 ◽  
Vol 10 (42) ◽  
pp. 24867-24876
Author(s):  
B. Moses Abraham

We report the high pressure structural and vibrational properties of 5,5′-bitetrazole-1,1′-diolate based energetic ionic salts via dispersion-corrected density functional theory calculations.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 656-660
Author(s):  
Dai Wei ◽  
Song Jin-Fan ◽  
Wang Ping ◽  
Lu Cheng ◽  
Lu Zhi-Wen ◽  
...  

A theoretical investigation on structural and elastic properties of zinc sulfide semiconductor under high pressure is performed by employing the first-principles method based on the density functional theory. The calculated results show that the transition pressure Pt for the structural phase transition from the B3 structure to the B1 structure is 17:04 GPa. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


Sign in / Sign up

Export Citation Format

Share Document