The Cheticamp pluton: a Cambrian granodioritic intrusion in the western Cape Breton Highlands, Nova Scotia

1986 ◽  
Vol 23 (11) ◽  
pp. 1686-1699 ◽  
Author(s):  
Sandra M. Barr ◽  
Alan S. Macdonald ◽  
John Blenkinsop

The Cheticamp pluton consists of biotite granodiorite (locally megacrystic) in the north and museovite–biotite granodiorite in the south, in probable faulted contact. These two rock types, especially the biotite granodiorite, show a broad range in modal and chemical compositions. They are interpreted to be cogenetic, with the museovite–biotite grandiorite derived from the biotite granodiorite by crystal fractionation involving mafic minerals, plagioclase, and sphene. The overall peraluminous composition of the suite resulted from the fractionation process, probably enhanced by alteration, rather than from derivation from peraluminous source rocks.A seven-point, whole-rock, Rb–Sr isochron indicates an age of 525 ± 40 Ma. The pluton intruded dioritic rocks and quartzo-feldspathic gneisses, thus indicating Precambrian ages for these units. It probably also postdates the Western Highlands volcanic–sedimentary complex, a major undated stratigraphic unit in the Cape Breton Highlands. Although the age overlaps the range of Rb–Sr ages from plutons of the Avalon Terrane of the Appalachian orogen, the geological setting of the Cheticamp pluton differs from that of true Avalonian plutons, such as those in southeastern Cape Breton Island.


1998 ◽  
Vol 35 (11) ◽  
pp. 1252-1270 ◽  
Author(s):  
S M Barr ◽  
R P Raeside ◽  
C E White

Geological correlations between Cape Breton Island and Newfoundland are apparent both in surface geology and at deeper crustal levels, based on similarities in Sm-Nd isotopic signatures. The Mira terrane of southeastern Cape Breton Island is part of the Avalon terrane sensu stricto and is composed of Neoproterozoic volcanic-sedimentary-plutonic belts and overlying Cambrian rocks directly comparable to those in the western part of the Newfoundland Avalon terrane. The Bras d'Or terrane is also mainly of Neoproterozoic age, but shows lithological and isotopic contrasts with the Mira terrane. Small areas of similar Neoproterozoic rocks occur in southern Newfoundland and to the north as inliers in the Exploits terrane. The Bras d'Or terrane and similar rocks in Newfoundland are interpreted to represent a peri-Gondwanan terrane where rocks of the Gander terrane were later formed. Hence this area is part of the Central Mobile Belt and distinct from Avalon terrane sensu stricto. The Aspy terrane is a complex area that may include fragments of Bras d'Or crust and components of the Gander, Exploits, and possibly Notre Dame terranes of Newfoundland. It formed by subduction and back-arc basin opening and closure during the Silurian to Early Devonian. The Blair River Inlier is a fragment of Grenvillian rocks, similar to those in the Grenvillian inliers in the Humber zone of western Newfoundland in terms of age, rock types, and isotopic composition. Silurian and Devonian promontory-promontory collision resulted in juxtaposition and stacking of these elements in Cape Breton Island, as in the Hermitage Flexure - Port aux Basques area of Newfoundland. Because the lower crust under Bras d'Or - Gander - Aspy terranes seems distinct from that under Avalon terrane sensu stricto, it is preferable to use the term peri-Gondwanan rather than Avalonian to refer to these areas.





1986 ◽  
Vol 23 (12) ◽  
pp. 1891-1901 ◽  
Author(s):  
R. A. Jamieson ◽  
O. van Breemen ◽  
R. W. Sullivan ◽  
K. L. Currie

Plutonic rocks of four different ages have been recognized in the Cape Breton Highlands on the basis of U–Pb dating of zircons. Two plutons, the North Branch Baddeck River leucotonalite [Formula: see text] and the Chéticamp pluton (550 ± 8 Ma), give dates that fall within the range of Late Proterozoic to Cambrian ages considered characteristic of the Avalon tectonostratigraphic zone of the eastern Appalachians. Late Ordovician to Silurian tonalite (Belle Côte Road orthogneiss, 433 ± 20 Ma) was metamorphosed, deformed, and incorporated into the central Highlands gneiss complex by approximately 370–395 Ma. High-level subvolcanic plutons (Salmon Pool pluton, [Formula: see text]) postdate all metamorphic rocks in the area. The presence of the older plutons is consistent with interpretation that the Cape Breton Highlands form part of the Avalon zone, but the presence of Ordovician–Silurian plutonic rocks and Devonian amphibolite-facies metamorphism is anomalous in comparison with the Avalon zone of Newfoundland and southeastern Cape Breton Island. Terranes with similar Late Proterozoic to mid-Paleozoic plutonic and metamorphic histories form a discontinuous belt along the northwest side of the Avalon zone southwest of Cape Breton Island. These rocks probably reflect events during and after the accretion of the Avalon zone to North America.



1996 ◽  
Vol 33 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Randall F. Miller

Studies of Coleoptera remains from two late-glacial sites on Cape Breton Island, Nova Scotia, Canada, present a picture of the paleoenvironment and paleoclimate during the Allerød–Younger Dryas transition in the Maritimes region. They provide evidence for the Younger Dryas event in northeastern North America. Between 11 300 and 10 800 BP, the beetle assemblages at the Campbell site are typical of faunas of the modern middle to northern boreal forest. The West Mabou site contains beetle fossils younger than 10 900 BP, possibly as young as 10 500 BP, extending into the time period of the Younger Dryas, dated from 10 800 to 10 000 BP in the Maritimes. A "cold climate" indicator recognizable in the beetle fauna, Olophrum boreale, occurs in relative abundance and provides an interesting comparison with sites in Europe where the same northern boreo-montane species is evident at the beginning of the Younger Dryas.



1984 ◽  
Vol 21 (7) ◽  
pp. 762-774 ◽  
Author(s):  
Marie-Claude Blanchard ◽  
Rebecca A. Jamieson ◽  
Elizabeth B. More

The Fisset Brook Formation of western Cape Breton Island and its equivalents at MacMillan Mountain and the north Baddeck River are examples of Late Devonian and Early Carboniferous volcanic sequences associated with the formation of post-Acadian successor basins in the northeastern Appalachians. They consist of bimodal basalt–rhyolite suites interbedded with alluvial fan, lacustrine, and rare fluvial sediments. The earliest volcanic products are rhyolites and somewhat evolved basalts associated with coarse sediments, followed by tholeiitic to transitional basalt flows interlayered with lacustrine-type deposits. Geochemical studies on the Fisset Brook Formation indicate extensive remobilization of alkalies, Ca, Rb, and Sr, making these elements inappropriate for determining tectonic setting or magmatic affinity. Use of less mobile elements (Ti, Nb, Y, and Zr) suggests that the basalts are tholeiitic and that the apparent alkalinity of the type section lavas is a result of alteration. We conclude that volcanism in western Cape Breton Island started at MacMillan Mountain and migrated westwards, probably towards the centre of the deepening Magdalen Basin.



1974 ◽  
Vol 11 (10) ◽  
pp. 1357-1365 ◽  
Author(s):  
J. Terasmae

A palynological study and radiocarbon dating of surficial deposits on Port Hood Island, Nova Scotia, have indicated that deglaciation occurred more than 11 000 yr B.P., and that the presence of an 'upper till' in local depressions is attributable to soil-creep processes under cold and wet climatic conditions some 11 000 to 10 000 yr B.P. No evidence was found of an ice advance younger than 11 000 yr B.P. in western Cape Breton Island.



2002 ◽  
Vol 39 (9) ◽  
pp. 1299-1312 ◽  
Author(s):  
Sonya A Dehler ◽  
D Patrick Potter

New high-resolution magnetic data have been acquired along the coast of western Cape Breton Island near Cheticamp, Nova Scotia, in a transition zone between exposed, elevated basement of the Cape Breton highlands and the adjacent Carboniferous sediment-filled Magdalen Basin. These data were collected to provide continuity between the mapped onshore geology and the geophysical-based interpretations of offshore structure. Separation of the geologic component of the data from the effects of diurnal and other variations in the Earth's magnetic field was made difficult by recording problems at the nearby base recording station. Careful correlation of the fragmented station signal with records from a nearby permanent magnetic observatory enabled a reasonable diurnal signal to be synthesized and applied successfully to the data. Additional processing and filtering helped to enhance small anomalies in the data. Several low-amplitude, fairly linear magnetic anomalies are visible in the reduced anomaly data, generally trending north to northwest away from the coastline. Small-amplitude lineations in the offshore at Cheticamp are associated with folded, tilted, or faulted strata imaged on coincident seismic reflection data and are interpreted as representing juxtaposed units of Carboniferous strata. Other small anomalies appear to represent shallow contacts between intrusive or metasedimentary rocks visible in outcrops near the coast. A stronger, coast-parallel anomaly that extends across the study area from a regional magnetic high in the north is coincident with an offset in basement rocks or deeper strata beneath Carboniferous basin fill. This anomaly may mark part of the faulted transition zone between the elevated highlands of northwestern Cape Breton Island and the Magdalen Basin depocentre.



Sign in / Sign up

Export Citation Format

Share Document