fractionation process
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 99)

H-INDEX

22
(FIVE YEARS 7)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Jinhua Qin ◽  
Denghong Wang ◽  
Yuchuan Chen

Chuankou tungsten (W) ore field, with an estimated WO3 reserve exceeding 300,000 tonnes, is so far the largest Indosinian (Triassic) granite-related W ore field in South China. However, the precise emplacement ages, sources of granitoids, and their relationship with W mineralization are still not well understood. In this research, four main magmatic stages (G-1 to G-4) have been identified in the Chuankou ore field, including G-1 (phase I, biotite monzogranite), G-2 (phase II, two-mica monzogranite), G-3 (phase III, fine-grained granite), and G-4 (phase IV, granite porphyry). LA-ICP-MS U-Pb dating of zircon grains from granitoids of the Chuankou W ore field yields emplacement ages of 230.8 ± 1.6 Ma, 222.1 ± 0.56 Ma, 203.1 ± 1.6 Ma, and 135.5 ± 2.4 Ma, respectively. Granitoids from the Chuankou ore field contain a large amount of peraluminous minerals such as biotite, musvite, garnet and tourmaline. Geochemically, the granitoids have high Si and Al (A/CNK > 1.1) content but low alkali, Fe, Mg, Mn, and Ca content. Moreover, there is enrichment of Rb, Zr, Hf, Th, and U, but depletions of Ba, Sr, P, and Ti. The granitoids have especially low Zr + Nb + Ce + Y and high Rb/Ba ratios, further indicating a highly fractionated S-type granite affinity with a significant crystal fractionation process in regard to K-feldspar, plagioclase, biotite, Ti-bearing minerals (except rutile), zircon, apatite, allanite, and monazite. Whole-rock εNd(t) and TDM2 values are −10.77 and 2090 Ma for G-1, −9.09 to −7.47 and 1764–1684 Ma for G-2, −10.07 to −6.53 and 1669–1471 Ma for G-3, respectively, indicating that the Chuankou granitoids were derived from two episodes of partial melting of the Paleoproterozoic to Mesoproterozoic metamorphic basement. Trace elements within the zircons and whole-rock geochemistry yielded evidence of the close relationship between W mineralization and G-1 and G-2 granitoids of the Chuankou ore field. The batholith of the Chuankou ore field was formed 20–10 Ma later than the peak age of the collisions orogeny and formed in a post-collisional setting.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brita Asikanius ◽  
Anna-Stiina Jääskeläinen ◽  
Hanna Koivula ◽  
Petri Oinonen ◽  
Monika Österberg

Valorization of side streams offers novel types of raw materials to complement or replace synthetic and food-based alternatives in materials science, increasing profitability and decreasing the environmental impacts of biorefineries. Lignocellulose biomass contains lignin and carbohydrates that are covalently linked into lignin-carbohydrate complexes (LCCs). In biomass fractionation processes, these complexes are conventionally considered as waste, which hinders the biomass fractionation process, and they may solubilize into aqueous effluents. This study presents how LCCs, derived from pulp mill effluent, can be turned into valuable biopolymers for industrial polymer film applications. Free-standing composite films containing hydroxyethyl cellulose (HEC) and LCCs with varying molar mass, charge density and lignin/hemicellulose ratio were prepared to study the effect of LCC amount on mechanical properties and oxygen permeability. Increasing the LCC content increased the yield point and Young’s modulus of the films. Breaking strain measurements revealed a non-linear correlation with the LCC concentration for the samples with higher lignin than hemicellulose content. The addition of LCC enhanced oxygen barrier properties of HEC films significantly even at high relative humidity. The present research demonstrates how a currently underutilized fraction of the biorefinery side stream has the potential to be valorized as a biopolymer in industrial applications, for example as a barrier film for paper and board packaging.


2021 ◽  
Vol 22 (22) ◽  
pp. 12196
Author(s):  
Maria Elena Barone ◽  
Elliot Murphy ◽  
Rachel Parkes ◽  
Gerard T. A. Fleming ◽  
Floriana Campanile ◽  
...  

Microalgae have received growing interest for their capacity to produce bioactive metabolites. This study aimed at characterising the antimicrobial potential of the marine dinoflagellate Amphidinium carterae strain LACW11, isolated from the west of Ireland. Amphidinolides have been identified as cytotoxic polyoxygenated polyketides produced by several Amphidinium species. Phylogenetic inference assigned our strain to Amphidinium carterae subclade III, along with isolates interspersed in different geographic regions. A two-stage extraction and fractionation process of the biomass was carried out. Extracts obtained after stage-1 were tested for bioactivity against bacterial ATCC strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa. The stage-2 solid phase extraction provided 16 fractions, which were tested against S. aureus and E. faecalis. Fractions I, J and K yielded minimum inhibitory concentrations between 16 μg/mL and 256 μg/mL for both Gram-positive. A targeted metabolomic approach using UHPLC-HRMS/MS analysis applied on fractions G to J evidenced the presence of amphidinol type compounds AM-A, AM-B, AM-22 and a new derivative dehydroAM-A, with characteristic masses of m/z 1361, 1463, 1667 and 1343, respectively. Combining the results of the biological assays with the targeted metabolomic approach, we could conclude that AM-A and the new derivative dehydroAM-A are responsible for the detected antimicrobial bioactivity.


2021 ◽  
Vol 845 (1) ◽  
pp. 012064
Author(s):  
VI Orobinsky ◽  
A M Gievsky ◽  
I V Baskakov ◽  
V A Gulevsky ◽  
A V Chernyshov

Abstract To obtain high-quality grain and seeds, it is necessary to clean the combine heap of weeds. Modern air-screen grain cleaners equipped with a screen cleaning systems, flat screens and a double-aspiration pneumatic system with pre-screen and post-screen cleaning channels are used. The fractional principle of post-harvest grain processing is promising. To create a universal grain cleaning machine to isolate the main fraction from the grain heap at the first stage of post-harvest processing, Voronezh State Agar University named after Emperor Peter I carried out theoretical and experimental studies, which made it possible to develop OZF-50, OZF-80 and SVS-30 separators. The machines have higher productivity, the original sieve design with an increased share of sorting sieves and an exclusive aspiration system. A number of new technical solutions have been used in the design of the separators, protected by patents of the Russian Federation. Theoretical prerequisites established the possibility of increasing the productivity 1.6-1.8 times according to GOST R 52325-2005. The total air consumption of the pneumatic system of grain cleaning machines can be reduced by 25-40%. Further improvement of separators requires a deeper study of the grain fractionation process, aerodynamic characteristics of aspiration systems, receiving and distribution devices, and establishment of close mutually beneficial relations between scientific institutions and agricultural engineering enterprises. This can contribute to the development of both domestic agricultural science and grain cleaning equipment production.


Author(s):  
Lin Yunpeng ◽  
Yunhai Li ◽  
Wang Liang ◽  
Yin Xijie ◽  
Zou Xiaochun ◽  
...  

In this study, the δD and δ18O values of 162 precipitation samples (including 33 typhoon-related precipitation samples), collected in Xiamen, Southeast China coast, during June 2018 to August 2019, were investigated and analyzed. The results show that there are obvious seasonal variations in the δD and δ18O, which are mainly controlled by the East Asia Monsoon with significant influence of typhoon events in summer. The influence of moisture sources on δ18O values overrides the influence of precipitation fractionation process on δ18O values which leads to an inverse temperature effect in the study area. In comparison to the seasonal scale, the synoptic time-series variation of δD and δ18O is much more complicated. In general, there are three types of isotopic variations in the normal precipitation processes, which are obviously affected by re-evaporation processes and continuing equilibrium fractionation during condensation. The local meteorological parameters during normal precipitation, which mainly control the re-evaporation process, are the dominant factors for the variation patterns of δD and δ18O, whereas moisture sources control the overall isotope values of precipitation. The differences between the time-series of normal and typhoon-related precipitation are mainly controlled by the changes of physical processes and meteorologic parameters during the precipitation process. However, due to the unique atmospheric structure and dynamic processes of typhoons, the δD and δ18O of typhoon-related precipitation changes in stages gradually as the distance between the typhoon’s center and the study area changes. The uniformity of typhoon structure leads to a similar staged changes in different typhoon-related precipitation. The moisture source trajectory of typhoon-related precipitation shows a clear spiral structure (except for typhoon Yutu), and the moisture sources at different heights control the δD and δ18O values of typhoon-related precipitation. This study is important for quantifying the global changes of typhoon processes and paleotempestology studies.


2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Isabela de Oliveira Pereira ◽  
Ângela Alves dos Santos ◽  
Davi L Gonçalves ◽  
Marcela Purificação ◽  
Nick Candiotto Guimarães ◽  
...  

ABSTRACT First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G–E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2 and XKS1 genes and a mutant ([4–59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G–E2G production process.


Author(s):  
Andrey S. Marchev ◽  
Liliya V. Vasileva ◽  
Kristiana M. Amirova ◽  
Martina S. Savova ◽  
Zhivka P. Balcheva-Sivenova ◽  
...  

AbstractDuring the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.


2021 ◽  
Vol 4 (1(112)) ◽  
pp. 54-60
Author(s):  
Vadym Bredykhin ◽  
Andrey Pak ◽  
Petro Gurskyi ◽  
Sergey Denisenko ◽  
Khrystyna Bredykhina

This paper has substantiated the mechanical-mathematical modeling of the process of fractionation of grain material into fractions. It has been established that this could optimize the process parameters and would make it possible to design new or improve existing working surfaces of centrifugal separators. A mechanical-mathematical model of the pneumatic vibratory centrifugal separation of grain material by density has been improved. This research is based on the method of hydrodynamics of multiphase media. The improved mechanical-mathematical model takes into consideration the interaction between the discrete and continuous phases of grain material by introducing conditions of interaction at the interface of these phases. In the hydrodynamic modeling of the movement of the circular layer of seeds, the coefficient of dynamic viscosity of discrete and continuous phases was taken into consideration. It was established that the pneumatic vibratory centrifugal separation process parameters are critically affected by the circular frequency of rotation of the cylindrical working surface, the frequency and amplitude of its oscillations. As well as such process characteristics as the airflow rate, dynamic viscosity coefficient, the average thickness of a grain material layer, and the mean density of its particles. Rational values for the technical parameters of the grain material pneumatic vibratory centrifugal fractionation process in terms of density have been determined by using the improved mechanical-mathematical model. The amplitude and oscillation frequency of the working surface are in the ranges A=(35…50)·10–5 m, ω=15.0...15.6 rad/s. The circular rotation frequency of the working surface, ω=24...25 rad/s. The airflow rate, V=2 m/s. It was established that using the improved mechanical-mathematical model of fractionation makes it possible to improve the performance of a pneumatic vibratory centrifugal separator by 9 %. At the same time, the effectiveness of grain material separation could reach 100 %.


Sign in / Sign up

Export Citation Format

Share Document