Problems Associated with Fisheries Assessment Methods in the Great Lakes

1987 ◽  
Vol 44 (S2) ◽  
pp. s431-s438 ◽  
Author(s):  
W. J. Christie ◽  
Chris I. Goddard ◽  
Stephen J. Nepszy ◽  
John J. Collins ◽  
Wayne MacCallum

This paper presents a review of Great Lakes fishery assessment problems and addresses the variety of fisheries, the special circumstances created by rehabilitation, the emergence of joint strategic planning among fishery agencies, and convergence of water quality and fishery management. The inferences that emerge are that (1) continuing observation series are essential, (2) the variety of needs calls for a variety of assessment approaches, and (3) assessment objectives need to be clearly defined in order to protect the ongoing monitoring series. It is suggested that more attention should be given to fish community monitoring, to sport fishery statistics, and to gear calibration. On the other hand, improved coordination of human and material resources and focus on integration of water quality and fisheries assessment can achieve much, without great funding increases.


1987 ◽  
Vol 44 (S2) ◽  
pp. s486-s499 ◽  
Author(s):  
W. J. Christie ◽  
G. R. Spangler ◽  
K. H. Loftus ◽  
W. L. Hartman ◽  
P. J. Colby ◽  
...  

Review of the ASPY syntheses suggested that destabilization and subsequent fish community recovery in the Great Lakes are compatible with a model in which postglacial succession, and the structure and persistence of the fish communities, were governed by piscivores. Recent advances in the areas of particle size distribution, ontogenetic niche theory, and ecosystem stability contributed to a broader understanding of fishery management alternatives. Species succession in Great Lakes aquatic communities is characterized as a cyclic repetition of maturation followed by seasonal, annual, or periodic setbacks. These are termed "enjuvenation events" and are attributed to any cultural or climatic factors which induce flux in energy–matter delivery to the system. The extent of enjuvenation is dependent upon the magnitude of the perturbation and maturity of the community and is predictable to some degree by the age and biomass distributions of the species present. The time course of rehabilitation to any arbitrary prior condition of the community is closely related to the enjuvenation–maturation cycle and to the life span and reproductive characteristics of the species present. The principal homeostatic mechanism is perceived to lie with variations in the durations of life history stanzas as affected by fish growth rates. The "biomass storage" function of larger organisms in the system is thought to be a major determinant of the "biotic inertia" or sensitivity of the community to perturbations. We are convinced that trophic linkages from the piscivores downwards must be maintained as biological feedback pathways to ensure that moderately excessive fishery yields can be self-limiting. Without these linkages (vulnerable to intensive exploitation or other catastrophic reductions in predators), biomass capture of nutrient inputs by algae will vector to waste as planktivore density limits secondary production. The extent to which the fish community can be maintained or driven to a particular species composition is dependent upon the degree of external control of all sorts that can be applied to the system. The rehabilitation continuum ranges from a self-sustaining assemblage of native species requiring little external control to a completely artificially supported community of non-native species requiring extensive controls for both water quality and fish community maintenance.



Fisheries ◽  
2019 ◽  
Vol 44 (6) ◽  
pp. 288-292 ◽  
Author(s):  
Amanda G. Guthrie ◽  
William W. Taylor ◽  
Andrew M. Muir ◽  
Henry A. Regier ◽  
Marc Gaden


1982 ◽  
Vol 11 (3) ◽  
pp. 482-486 ◽  
Author(s):  
G. J. Wall ◽  
W. T. Dickinson ◽  
L. J. P. Vliet


1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.



2009 ◽  
Vol 1 (2) ◽  
pp. 254-267 ◽  
Author(s):  
Gail Krantzberg
Keyword(s):  


2003 ◽  
Vol 60 (12) ◽  
pp. 1552-1574 ◽  
Author(s):  
Charles R Bronte ◽  
Mark P Ebener ◽  
Donald R Schreiner ◽  
David S DeVault ◽  
Michael M Petzold ◽  
...  

Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.



2003 ◽  
Vol 60 (6) ◽  
pp. 676-689 ◽  
Author(s):  
Sheila A McNair ◽  
Patricia Chow-Fraser

We quantified the chlorophyll a content of planktonic algae and benthic algae in periphyton on acrylic rods and in epiphyton growing on macrophytes in 24 coastal wetlands in all five Laurentian Great Lakes. Sites were selected to represent a wide range of environmental conditions ranging from nutrient-poor, clear-water marshes with abundant macrophytes to nutrient-enriched, turbid systems devoid of aquatic vegetation. Water quality and species and percent cover of submergent macrophytes were measured in each wetland. Principal components analysis (PCA) showed that total phosphorus, turbidity, and suspended solids, variables associated with human-induced degradation, were most strongly correlated with PC axis 1 (PC1), accounting for 69% of the total variation. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounting for 54 and 70% of the total variation in periphyton and phytoplankton data, whereas PC1 only accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively correlated with percent cover and species richness of submergent macrophytes, but phytoplankton biomass was not. We conclude that periphytic and planktonic chlorophyll a biomass are good indicators of human-induced water-quality degradation and recommend that both benthic and planktonic algal biomass should be routinely monitored as part of an effective wetland management program.



Sign in / Sign up

Export Citation Format

Share Document