A Perspective on Great Lakes Fish Community Rehabilitation

1987 ◽  
Vol 44 (S2) ◽  
pp. s486-s499 ◽  
Author(s):  
W. J. Christie ◽  
G. R. Spangler ◽  
K. H. Loftus ◽  
W. L. Hartman ◽  
P. J. Colby ◽  
...  

Review of the ASPY syntheses suggested that destabilization and subsequent fish community recovery in the Great Lakes are compatible with a model in which postglacial succession, and the structure and persistence of the fish communities, were governed by piscivores. Recent advances in the areas of particle size distribution, ontogenetic niche theory, and ecosystem stability contributed to a broader understanding of fishery management alternatives. Species succession in Great Lakes aquatic communities is characterized as a cyclic repetition of maturation followed by seasonal, annual, or periodic setbacks. These are termed "enjuvenation events" and are attributed to any cultural or climatic factors which induce flux in energy–matter delivery to the system. The extent of enjuvenation is dependent upon the magnitude of the perturbation and maturity of the community and is predictable to some degree by the age and biomass distributions of the species present. The time course of rehabilitation to any arbitrary prior condition of the community is closely related to the enjuvenation–maturation cycle and to the life span and reproductive characteristics of the species present. The principal homeostatic mechanism is perceived to lie with variations in the durations of life history stanzas as affected by fish growth rates. The "biomass storage" function of larger organisms in the system is thought to be a major determinant of the "biotic inertia" or sensitivity of the community to perturbations. We are convinced that trophic linkages from the piscivores downwards must be maintained as biological feedback pathways to ensure that moderately excessive fishery yields can be self-limiting. Without these linkages (vulnerable to intensive exploitation or other catastrophic reductions in predators), biomass capture of nutrient inputs by algae will vector to waste as planktivore density limits secondary production. The extent to which the fish community can be maintained or driven to a particular species composition is dependent upon the degree of external control of all sorts that can be applied to the system. The rehabilitation continuum ranges from a self-sustaining assemblage of native species requiring little external control to a completely artificially supported community of non-native species requiring extensive controls for both water quality and fish community maintenance.


2003 ◽  
Vol 60 (12) ◽  
pp. 1552-1574 ◽  
Author(s):  
Charles R Bronte ◽  
Mark P Ebener ◽  
Donald R Schreiner ◽  
David S DeVault ◽  
Michael M Petzold ◽  
...  

Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.



1972 ◽  
Vol 29 (6) ◽  
pp. 833-847 ◽  
Author(s):  
W. Numann

The upper basin or Obersee of the Bodensee still retains all the fish species described more than four centuries ago, though rapid changes have recently been noted in many aspects of the fish community and of the Bodensee ecosystem. Though a variety of non-native species have been introduced, including a number of European and North American salmonids, none has become a prominent part of the community. The famous Blaufelchen, a pelagic coregonine, has recently been threatened by a combination of increasingly intensive exploitation, beginning at a low minimum size, compounded by an increasing growth rate of the species due to low population density, and due to increased planktonic food as a result of eutrophication. Consequently, by the early 1960s, the fishery came to exploit large yearlings, and few Blaufelchen survived to spawn. Eutrophication has reached a stage that is marginal to a number of deeper, benthic coregonines and char. Cyprinids, usually inshore, have expanded greatly, have invaded the pelagic habitat, and are subject to periodic mass mortalities. Other of man's effects are identified as are management measures now in practice.



1987 ◽  
Vol 44 (S2) ◽  
pp. s431-s438 ◽  
Author(s):  
W. J. Christie ◽  
Chris I. Goddard ◽  
Stephen J. Nepszy ◽  
John J. Collins ◽  
Wayne MacCallum

This paper presents a review of Great Lakes fishery assessment problems and addresses the variety of fisheries, the special circumstances created by rehabilitation, the emergence of joint strategic planning among fishery agencies, and convergence of water quality and fishery management. The inferences that emerge are that (1) continuing observation series are essential, (2) the variety of needs calls for a variety of assessment approaches, and (3) assessment objectives need to be clearly defined in order to protect the ongoing monitoring series. It is suggested that more attention should be given to fish community monitoring, to sport fishery statistics, and to gear calibration. On the other hand, improved coordination of human and material resources and focus on integration of water quality and fisheries assessment can achieve much, without great funding increases.



<i>Abstract</i>.—Fish population recoveries can result from ecosystem change in the absence of targeted restoration actions. In Lake Ontario, native Deepwater Sculpin <i>Myoxocephalus thompsonii</i> were common in the late 1800s, but by the mid-1900s the species was possibly extirpated. During this period, mineral nutrient inputs increased and piscivore abundance declined, which increased the abundance of the nonnative planktivores Alewife <i>Alosa pseudoharengus</i> and Rainbow Smelt <i>Osmerus mordax</i>. Deepwater Sculpin larvae are pelagic and vulnerable to predation by planktivores. Annual bottom trawl surveys did not capture Deepwater Sculpin from 1978 to 1995 (<i>n</i> = 6,666 tows) despite sampling appropriate habitat (trawl depths: 7–170 m). The absence of observations during this time resulted in an elevated conservation status for the species, but no restoration actions were initiated. In 1996, three individuals were caught in bottom trawls, the first observed since 1972. Since then, their abundance has increased, and in 2017, they were the second most abundant Lake Ontario prey fish. The food-web changes that occurred from 1970 through the 1990s contributed to this recovery. Alewife and Rainbow Smelt abundance declined during this period due to predation by stocked salmonids and legislation that reduced nutrient inputs and food web productivity. In the 1990s, proliferation of nonnative, filter-feeding dreissenid mussels dramatically increased water clarity. As light penetration increased, the early-spring depth distribution of Alewife and Rainbow Smelt shifted deeper, away from larval Deepwater Sculpin habitat. The intentional and unintentional changes that occurred in Lake Ontario were not targeted at Deepwater Sculpin restoration but resulted in conditions that favored the species’ recovery. While standard surveys documented the recovery, more diverse information (e.g., observations in deep habitats and early-life stages) would have improved our understanding of why the species recovered when it did. Annual Lake Ontario trawl surveys have collaboratively expanded their spatial extent and diversified habitat sampled, based on lessons learned from the Deepwater Sculpin recovery.



2015 ◽  
Vol 167 ◽  
pp. 30-37 ◽  
Author(s):  
Nadine Heck ◽  
Richard C. Stedman ◽  
Marc Gaden


2020 ◽  
Author(s):  
Xuan Liu ◽  
Jason R Rohr ◽  
Xianping Li ◽  
Teng Deng ◽  
Wenhao Li ◽  
...  

Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.



2016 ◽  
Vol 73 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Francine H. Mejia ◽  
Colden V. Baxter ◽  
Eric K. Berntsen ◽  
Alexander K. Fremier

Materials, energy, and organisms from groundwater serve as resource subsidies to lotic systems. These subsidies influence food production and post-emergent fish growth and condition through nutrient inputs and water temperature changes. To test whether post-emergent fish grew faster in gaining sites, we grew hatchery post-emergent salmon in enclosures, sampled periphyton, benthic invertebrates, and wild salmon, and modeled fish growth across a gradient of groundwater – surface water exchange. Fish grew almost twice as fast in gaining (2.7%·day−1) than in losing (1.5%·day−1) sites. Fish from transient sites grew as much as gaining sites, but their condition was significantly lower (18.3% vs. 20.7%). Results suggest that groundwater – surface water exchange affects fish growth and energetic condition through direct and indirect pathways. Elevated nitrogen concentrations and consistently warmer water temperature in gaining sites have a strong effect on basal production with subsequent effects on invertebrate biomass, fish growth, and condition. Findings highlight the importance of groundwater – surface water exchange as a subsidy to rearing salmon and may inform strategies for restoring fish rearing habitat.



2008 ◽  
Vol 65 (6) ◽  
pp. 1153-1164 ◽  
Author(s):  
Carrol P. Hand ◽  
Stuart A. Ludsin ◽  
Brian J. Fryer ◽  
J. Ellen Marsden

Laurentian Great Lakes fishery management agencies are seeking ways to identify natal origins of parasitic- and spawning-phase sea lamprey ( Petromyzon marinus ) so that efforts to control this invasive species can be prioritized. We developed laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a technique to quantify elemental concentrations in larval sea lamprey statoliths and explored the use of statolith microchemistry as a tool to discriminate among larval sea lamprey production streams. Our analyses demonstrate that (i) traversing across the statolith with the laser is preferable to drilling down through its apex, (ii) preserving specimens in 95% ethanol versus freezing them has minimal effects on elemental concentrations, (iii) a minimum of 15 individuals per stream should accurately depict stream-specific statolith elemental signatures, and (iv) LA-ICP-MS is preferable to particle-induced X-ray emission (PIXE) for statolith analysis, based on higher precision, lower cost, reduced sampling-time requirements, and wider availability. Using LA-ICP-MS, we could discriminate among larvae from 13 streams located in Lakes Michigan, Huron, and Superior with 82% classification accuracy, indicating that this tool holds promise for determining natal origins of sea lamprey in the Great Lakes.





2014 ◽  
Vol 71 (2) ◽  
pp. 236-245 ◽  
Author(s):  
R.J. Stoffels ◽  
K.R. Clarke ◽  
R.A. Rehwinkel ◽  
B.J. McCarthy

To restore lateral connectivity in highly regulated river-floodplain systems, it has become necessary to implement localized, “managed” connection flows, made possible using floodplain irrigation infrastructure. These managed flows contrast with “natural”, large-scale, overbank flood pulses. We compared the effects of a managed and a natural connection event on (i) the composition of the large-bodied fish community and (ii) the structure of an endangered catfish population of a large floodplain lake. The change in community composition following the managed connection was not greater than that exhibited between seasons or years during disconnection. By contrast, the change in fish community structure following the natural connection was much larger than that attributed to background, within- and between-year variability during disconnection. Catfish population structure only changed significantly following the natural flood. While the natural flood increased various population rates of native fishes, it also increased those of non-native carp, a pest species. To have a positive influence on native biodiversity, environmental flows may need to be delivered to floodplains in a way that simulates the properties of natural flood pulses. A challenge, however, will be managing river-floodplain connectivity to benefit native more than non-native species.



Sign in / Sign up

Export Citation Format

Share Document