Sensitivities and Variances of Virtual Population Analysis As Applied to the Mackerel, Scomber japonicus

1988 ◽  
Vol 45 (3) ◽  
pp. 539-547 ◽  
Author(s):  
Michael H. Prager ◽  
Alec D. MacCall

Virtual population analysis (VPA) is widely used in fish stock assessment. However, VPA results are generally presented as point estimates, without error variance. Using numerical methods, we estimated the total variance of historical (1929–65) biomass estimates of mackerel, Scomber japonicus, off southern California. In the years before 1940, coefficients of variation (CV's) approached 100%; later, when weights at age and the age structure of the catch were better known, the CV's were about 25%. Most of the variability derives from uncertainties in estimates of natural mortality (M) and of weights at age. We also developed dimensionless coefficients (sensitivities) to examine the effects of errors in the inputs on the VPA biomass estimates. The largest sensitivities were to M and the total catch and varied substantially from year to year. As expected, sensitivity to M decreased with increasing exploitation, and sensitivity to catch increased with increasing exploitation. Using such sensitivities, one could estimate the error in a biomass estimate for a past year when M (or any other input) was thought to be unusually high or low. Thus, retrospective corrections can be made. Also, such sensitivities form an analytic tool for examining the properties of VPA, or any quantitative model.

2018 ◽  
Vol 75 (6) ◽  
pp. 883-896 ◽  
Author(s):  
Thomas Carruthers ◽  
Laurence Kell ◽  
Carlos Palma

Virtual population analysis (VPA) is used in many stock assessment settings and requires a total catch-at-age data set where an age is assigned to each fish that has been caught. These data sets are typically constructed using ad hoc methods that rely on numerous assumptions. Although approaches are available to account for observation error in these data, no statistically rigorous methods have been developed to account for uncertainty from data processing. To address this, we investigated a Bayesian multiple imputation approach to filling missing size data. Using Atlantic yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) as case studies, we evaluated the hypothesis that data processing is as important in determining management reference points in stock assessments as conventional sources of uncertainty. Size imputation models accounting for location, season, and year provided good predictive capacity. Uncertainty from data processing could be large; however, the circumstances for this were unpredictable and varied depending on the stock. These results indicate that VPA assessments should attempt to account for uncertainty in data processing to avoid potentially large compression of uncertainty in assessment results.


2005 ◽  
Vol 62 (8) ◽  
pp. 1865-1873 ◽  
Author(s):  
Jesús Jurado-Molina ◽  
Patricia A Livingston ◽  
James N Ianelli

Virtual population analysis and the statistical catch-at-age methods are common stock assessment models used for management advice. The difference between them is the statistical assumptions allowing the fitting of parameters by considering how errors enter into the models and the data sources for the estimation. Fishery managers are being asked to consider multispecies interactions in their decisions. One option to achieve this goal is the multispecies virtual population analysis (MSVPA); however, its lack of statistical assumptions does not allow the use of tools used in single-species stock assessment. We chose to use a two-species system, walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus), to incorporate the predation equations from MSVPA into an age-structured multispecies statistical model (MSM). Results suggest that both models produced similar estimates of suitability coefficients and predation mortalities. The adult population estimates from the single-species stock assessment and MSM were also comparable. MSM provides a measure of parameter uncertainty, which is not available with the MSVPA technologies. MSM is an important advancement in providing advice to fisheries managers because it incorporates the standard tools such as Bayesian methods and decision analysis into a multispecies context, helping to establish useful scenarios for management in the Bering Sea.


1987 ◽  
Vol 44 (S2) ◽  
pp. s360-s370 ◽  
Author(s):  
Niels Daan

Development of multispecies virtual population analysis (MSVPA), which assesses interspecific and intraspecific predation through an analysis of stomach contents, has verified the hypothesis that predation among exploited fish species contributes significantly to their natural mortality and that predation, and thus natural mortality, is inherently variable from year to year. In single-species virtual population analysis (SSVPA), natural mortality is assumed to be constant. MSVPA also suggests that natural mortality among young fish after recruitment is much higher than previously thought. Although catch quotas based on predictions of short-term catches from multispecies assessments would appear to differ little from those derived from single-species assessments, and certain problems remain to be resolved before multispecies assessments can be accepted for fish stock management, the method has considerable implications for management. For instance, it suggests that effects of mesh sizes and bycatch on fisheries need reevaluation and that year class strength may not be as fixed as previously assumed.


2010 ◽  
Vol 67 (8) ◽  
pp. 1247-1261 ◽  
Author(s):  
Nicolas Bousquet ◽  
Noel Cadigan ◽  
Thierry Duchesne ◽  
Louis-Paul Rivest

Landings from fisheries are often underreported, that is, the true landings are greater than those reported. Despite this bias, reported landings are widely used in fish stock assessments, and this might lead to overoptimistic exploitation strategies. We construct a statistical stock assessment model that accounts for underreported landings using the theory of censoring with sequential population analysis (SPA). The new model is developed and implemented specifically for the cod stock ( Gadus morhua ) from the southern Gulf of St. Lawrence (Canada). This stock is known to have unreported overfishing during 1985–1992. We show in simulations that for this stock, the new censored model can correctly detect the problematic landings. These corrections are nearly insensitive to subjective boundaries placed on real catches and robust to modifications imposed in the simulation of landings. However, when surveys are too noisy, the new SPA for censored catches can result in increased uncertainty in parameters used for management such as spawning stock biomass and age-structured stock size.


2008 ◽  
Vol 21 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Yong Chen ◽  
Yan Jiao ◽  
Chi-Lu Sun ◽  
Xinjun Chen

2009 ◽  
Vol 66 (8) ◽  
pp. 1776-1783 ◽  
Author(s):  
Laurence T. Kell ◽  
Mark Dickey-Collas ◽  
Niels T. Hintzen ◽  
Richard D. M. Nash ◽  
Graham M. Pilling ◽  
...  

Abstract Kell, L. T., Dickey-Collas, M., Hintzen, N. T., Nash, R. D. M., Pilling, G. M., and Roel, B. A. 2009. Lumpers or splitters? Evaluating recovery and management plans for metapopulations of herring. – ICES Journal of Marine Science, 66: 1776–1783. The long-term management of a stock representing a metapopulation has been simulated in a case study loosely based upon herring to the west of the British isles, where stocks are currently assessed and managed by management area, although there is evidence of mixing between stocks (in terms of connectivity, migrations, and exploitation). The simulations evaluate scientific advice (based on virtual population analysis, VPA) and the sustainability of fishing under two population-structure scenarios, corresponding either to discrete stocks, which only mix on the feeding grounds, or where diffusion between stocks takes place. The ability of stock assessment to monitor stock status and exploitation levels was evaluated for defining stocks based on fishing areas and for stocks that combined fishing areas. The study showed that assessment based on VPA of the metapopulation could fail to detect overexploitation of stocks and fail to detect and distinguish between the effects of exploitation and regime shifts.


2015 ◽  
Vol 81 (3) ◽  
pp. 418-428 ◽  
Author(s):  
YU SU ◽  
EMMANUEL ANDREW SWEKE ◽  
TAKASHI DENBOH ◽  
HIROSHI UEDA ◽  
TAKASHI MATSUISHI

1989 ◽  
Vol 46 (12) ◽  
pp. 2129-2139 ◽  
Author(s):  
Michael F. Lapointe ◽  
Randall M. Peterman ◽  
Alec D. MacCall

Many researchers have reported biases in estimates offish abundance reconstructed by virtual population analysis (VPA). We document that VPA can produce changing levels of bias through time, thereby creating spurious time trends in recruitment and stock biomass estimates. We generated catch data from empirically based simulations of nine fish populations, estimated abundances using VPA with a deliberately mis-specified natural mortality rate, M, and compared the estimates to the models' "true" abundances. A period of increasing fishing mortality rate, F, combined with an overestimate of M produced spurious decreasing time trends in estimated abundance and recruitment, even when the true time series of F was known. Analogously, an underestimate of M led to a spurious increasing time trend. Bias was increased by a higher true M, and (for a given total change in F) by a slower increase in F. Because field estimates of M are uncertain and trends in F are common, some apparent trends (or lack of them) in abundances reconstructed by VPA may be artifacts. Therefore, inferences about the results of past management actions and about physical or biological effects on variability in recruitment must be made cautiously when VPA estimates are used.


Author(s):  
Ali H. Al-Hassani ◽  
Abdul-Razak M. Mohamed

The stock assessment of Klunzinger's mullet, Planiliza klunzengeri was conducted, to estimate its some aspects viz. growth, mortality, recruitment, yield-per-recruit and virtual population analysis in Iraqi marine waters, northwest Arabian Gulf, Iraq, from February 2020 and January 2021. The population parameters were analyzed by the FiSAT software using monthly length-frequency data collected by the Shaheen dhow and from the artisanal fishermen at the fish landing site in Al-Fao city to derive information required for their management. A total of 3319 individuals of P. klunzingeri ranged from 11.0 to 27.0 cm have been collected. Length-weight relationship was calculated as W= 0.026L2.716. The asymptotic length (L∞), growth rate (K) and the growth performance index (Ø') were 29.8 cm, 0.34 and 2.48, respectively. The rates of annual instantaneous of total mortality (Z), fishing mortality (F), natural mortality (M) and present exploitation (Epresent) were 1.19, 0.84, 0.36 and 0.30, respectively. The recruitment pattern of P. klunzingeri was continuous throughout the year, with one peak during May. The results of virtual population analysis revealed that the majority of P. klunzingeri were harvested between 14 cm and 19 cm. The length at first capture (L50) in the current study was higher than the length at first maturity (Lm) of the species in the region. The Epresent was below the biological target reference points (E0.1= 0.770 and Emax= 0.903), referred to the stock of P. klunzingeri is underexploited. Therefore, the harvest level should increase to its maximum sustainable yield level by increasing fishing effort level with monitoring surveys and evaluate the risk associated with fishing effort increases as fishing precautionary approaches.


Sign in / Sign up

Export Citation Format

Share Document