Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 27-31 ◽  
Author(s):  
K Mekada ◽  
M Harada ◽  
L K Lin ◽  
K Koyasu ◽  
P M Borodin ◽  
...  

Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis – metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic X–Y chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.Key words: Microtus kikuchii, Microtus phylogeny, karyotype, synaptic sex chromosomes, synaptonemal complex.

Genome ◽  
1997 ◽  
Vol 40 (6) ◽  
pp. 829-833 ◽  
Author(s):  
P. M. Borodin ◽  
M. B. Rogatcheva ◽  
K. Koyasu ◽  
K. Fukuta ◽  
K. Mekada ◽  
...  

Pairing of X and Y chromosomes at meiotic prophase in males of Microtus montebelli was analyzed. The sex chromosomes form a synaptonemal complex at pachytene and end-to-end association at diakinesis – metaphase I in two species of the genus Microtus (M. montebelli and M. oeconomus) only, while they do not pair at all in the other species of this genus that have been studied so far. These data confirm that M. montebelli and M. oeconomus are very closely related in their origin. It is suggested that the sex chromosomes of M. montebelli and M. oeconomus display the ancestral type of X–Y pairing. The lack of X–Y pairing in most species of Microtus appeared after the split in lineage that led to M. oeconomus and M. montebelli on the one hand and the remaining species on the other.Key words: Microtus montebelli, arvicoline phylogeny, synaptic sex chromosome, synaptonemal complex, chromosomal evolution.


2000 ◽  
Vol 23 (3) ◽  
pp. 563-567 ◽  
Author(s):  
Patricia Pasquali Parise-Maltempi ◽  
Rita Maria Pereira Avancini

Pattonella intermutans has 2n = 12 chromosomes including three metacentric and two submetacentric pairs of autosomes and an XX/XY sex chromosome pair. The autosomes are characterized by the presence of a C band in the pericentromeric region while sex chromosomes are totally heterochromatic. The FISH technique showed a nucleolar organizer region (NOR) in autosome IV.


2019 ◽  
Vol 158 (3) ◽  
pp. 152-159 ◽  
Author(s):  
Ricardo J. Gunski ◽  
Rafael Kretschmer ◽  
Marcelo Santos de Souza ◽  
Ivanete de Oliveira Furo ◽  
Suziane A. Barcellos ◽  
...  

Among birds, species with the ZZ/ZW sex determination system generally show significant differences in morphology and size between the Z and W chromosomes (with the W usually being smaller than the Z). In the present study, we report for the first time the karyotype of the spot-flanked gallinule (Gallinula melanops) by means of classical and molecular cytogenetics. The spot-flanked gallinule has 2n = 80 (11 pairs of macrochromosomes and 29 pairs of microchromosomes) with an unusual W chromosome that is larger than the Z. Besides being totally heterochromatic, it has a secondary constriction in its long arm corresponding to the nucleolar organizer region, as confirmed by both silver staining and mapping of 18S rDNA probes. This is an unprecedented fact among birds. Additionally, 18S rDNA sites were also observed in 6 microchromosomes, while 5S rDNA was found in just 1 microchromosomal pair. Seven out of the 11 used microsatellite sequences were found to be accumulated in microchromosomes, and 6 microsatellite sequences were found in the W chromosome. In addition to the involvement of heterochromatin and repetitive DNAs in the differentiation of the large W chromosome, the results also show an alternative scenario that highlights the plasticity that shapes the evolutionary history of bird sex chromosomes.


Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Ruth B. Phillips ◽  
Sheila E. Hartley

The fluorescent banding patterns of the chromosomes of Salmo gairdneri (rainbow trout), Salmo trutta (brown trout), and Salmo salar (Atlantic salmon) from North America and Great Britain are described. Quinacrine stained a subset of C bands in S. gairdneri and S. salar from North America. No bright quinacrine (Q) bands were found on the chromosomes of S. salar from Great Britain or the chromosomes from any of the three stocks of S. trutta that were examined. Q bands were found at the centromeres of three to seven different chromosome pairs in S. gairdneri, including the pair that has been identified as the sex chromosome pair in some populations. In S. salar from North America the Q bands were found at the teleomeres of three to four chromosome pairs and at interstitial locations in the 10–13 large acrocentric chromosome pairs. Chromomycin A3 stained either the nucleolar organizer region or the adjacent heterochromatin or both in all three species. In S. trutta the entire short arm of the acrocentric chromosome containing the nucleolar organizer region always stained with chromomycin A3 while in S. gairdneri and S. salar the staining properties of the NOR and adjacent heterochromatin were polymorphic.Key words: banding, C-, Q-; Salmo; trout.


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 956-965 ◽  
Author(s):  
X. M. Shang ◽  
R. C. Jackson ◽  
H. T. Nguyen

Chromosome banding patterns in diploid, tetraploid, and hexaploid wheats were clearly revealed and compared by the HCl–KOH–Giemsa banding technique. Heterochromatin diversity of chromosomes 4A, 4B, 5B, and satellite chromosomes IB and 6B was shown at the centromeric, pericentric, telomeric, interstitial, and satellite regions. Quantitative comparisons were made of the amount of heterochromatin in chromosomes 4A, 4B, and 5B and among genomes of 'Chinese Spring' (Triticum aestivum). Genome relationships were evaluated in the extant diploid and polyploid wheat taxa. Modifications of the banding technique by hypotonic solution and water treatments and by changing air-drying time of slides influenced centromeric, interstitial, and nucleolar organizer region banding patterns, greatly increased the volume of chromosomes, produced different banding patterns, and significantly changed the nuclear morphologies.Key words: HKG-banding, diversity, chromosomes, genome relationships, Triticum.


2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 897-903 ◽  
Author(s):  
S. Morelli ◽  
MR. Vicari ◽  
LAC. Bertollo

The taxonomy/systematics of the Erythrinidae fish is still imprecise, with several doubts on their relationships. Karyotypes and chromosomal characteristics of some species of the Hoplias lacerdae group (Erythrinidae), from different Brazilian hydrographic basins and pisciculture stations, were analyzed in the present study, using conventional Giemsa staining, C-banding, silver staining, Mithramycin and Distamycin/DAPI fluorochromes, and fluorescent in situ hybridization (FISH). A diploid chromosome number of 2n = 50 and karyotypes composed of meta- and submetacentric chromosomes without sex-related differences were found. Only one active NOR (Nucleolar Organizer Region) site was found, which was identified by silver staining (Ag-NOR) and FISH, located on the chromosome pair 11, although additional 45S rDNA sites were also mapped on other chromosome pairs only by FISH. The Ag-NOR of the chromosome pair 11 was found to be GC-rich, appearing positive after Mithramycin staining. Mithramycin-positive/DAPI-negative sites were also observed in the centromeric/pericentomeric regions of the chromosome pairs 4, 6, 15, and 19, which have also affinity to silver nitrate. However, these four sites were not detected by FISH with the rDNA probe, indicating to be only argentophilic GC-rich heterochromatic regions. Chromosome data show that the karyotype evolution in Hoplias lacerdae group is relatively conserved and follows a particular pathway concerning the other Erythrinidae fishes, such as Hoplias malabaricus, Hoplerythrinus unitaeniatus, and Erythrinus erythrinus, in which polytypic karyotypes are found. Thus, the H. lacerdae group shows chromosome features that are not closely related to those of the congeneric H. malabaricus group. These finds, together with genetic and morphologic data, are important tools to be considered in a major revision of the Erythrinidae family, as well as for conservation programs.


2021 ◽  
Vol 43 (3) ◽  
pp. 237-249 ◽  
Author(s):  
Thanh Dat Ta ◽  
Nomar Espinosa Waminal ◽  
Thi Hong Nguyen ◽  
Remnyl Joyce Pellerin ◽  
Hyun Hee Kim

Abstract Background DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. Objective To understand the dynamics of these TRs and their impact on S. tora dysploidization. Methods We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. Results Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. Conclusions These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in “carrying” repeats during genome reshuffling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jung-Hyun Kim ◽  
Vladimir N. Noskov ◽  
Aleksey Y. Ogurtsov ◽  
Ramaiah Nagaraja ◽  
Nikolai Petrov ◽  
...  

AbstractThe rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.


Sign in / Sign up

Export Citation Format

Share Document