Pattern of X–Y chromosome pairing in the Japanese field vole, Microtus montebelli

Genome ◽  
1997 ◽  
Vol 40 (6) ◽  
pp. 829-833 ◽  
Author(s):  
P. M. Borodin ◽  
M. B. Rogatcheva ◽  
K. Koyasu ◽  
K. Fukuta ◽  
K. Mekada ◽  
...  

Pairing of X and Y chromosomes at meiotic prophase in males of Microtus montebelli was analyzed. The sex chromosomes form a synaptonemal complex at pachytene and end-to-end association at diakinesis – metaphase I in two species of the genus Microtus (M. montebelli and M. oeconomus) only, while they do not pair at all in the other species of this genus that have been studied so far. These data confirm that M. montebelli and M. oeconomus are very closely related in their origin. It is suggested that the sex chromosomes of M. montebelli and M. oeconomus display the ancestral type of X–Y pairing. The lack of X–Y pairing in most species of Microtus appeared after the split in lineage that led to M. oeconomus and M. montebelli on the one hand and the remaining species on the other.Key words: Microtus montebelli, arvicoline phylogeny, synaptic sex chromosome, synaptonemal complex, chromosomal evolution.

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 27-31 ◽  
Author(s):  
K Mekada ◽  
M Harada ◽  
L K Lin ◽  
K Koyasu ◽  
P M Borodin ◽  
...  

Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis – metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic X–Y chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.Key words: Microtus kikuchii, Microtus phylogeny, karyotype, synaptic sex chromosomes, synaptonemal complex.


Author(s):  
R. J McKinlay Gardner ◽  
David J Amor

The sex chromosomes (gonosomes) are different, and sex chromosome translocations need to be considered separately from translocations between autosomes. A sex chromosome can engage in translocation with an autosome, with the other sex chromosome, or even with its homolog. The qualities of the sex chromosomes have unique implications in terms of the genetic functioning of gonosome-autosome translocations. This chapter acknowledges the specific peculiarities that the sex chromosomes imply: the X being subject to transcriptional silencing; and the very small Y gene complement being confined largely to sex-determining loci. It reviews translocations between sex chromosomes and autosomes; between X and Y chromosomes; and even the very rare circumstance of between X chromosomes and between Y chromosomes. The differences in assessing risk, according to chromosome form, in comparison with the autosomal translocation, are reviewed, and the biology behind these differences is discussed.


1982 ◽  
Vol 58 (1) ◽  
pp. 411-422
Author(s):  
R. Benavente ◽  
R. Wettstein ◽  
M. Papa

An ultrastructural study was performed on the sex chromosomes (male X1X2X3O) during the spermatogenesis of Tegenaria domestica (Arachnida, Agelenidae). This study was carried out using random and serially cut sections. During pachytene and diplotene the three X chromosomes are longitudinally paired. Each of these consists of a central core of condensed chromatin, surrounded by a field of dense chromatin projections through which the chromosomes are in contact with one another. These projections may be responsible for the recognition and pairing of the sex chromosomes and in some way participate in their non-disjunction during anaphase I. A study of the structure and behaviour of the sex chromosomes during spermatogenesis is also presented. The available information on non-synaptonemal complex-mediated chromosome pairing and a systematization of sex chromosome structure in spiders are discussed.


Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Peter Luykx

Collections of colonies of the termite Incisitermes schwarzi from mangroves around the coast of Jamaica revealed six chromosomal types, all involving variations or rearrangements of the sex chromosomes. One of the types had a heteromorphic sex bivalent in which the Y chromosome was larger than the X. The other five races had complex interchange multiples: a chain of 11, a chain of 12, a ring of 12, a ring of 14, and a ring of 18 chromosomes. The situation is similar to that described previously for Kalotermes approximatus, another member of the family Kalotermitidae, in the southeastern United States. The different chromosomal types can be arranged in an evolutionary series, each step requiring an interchange or fusion between an autosome and a previously existing sex chromosome. Such polymorphic chromosome systems, containing Y-segregating elements of different evolutionary ages, may offer an unusual opportunity for studying the sequence of changes accompanying the evolution of Y chromosomes. Key words: termite, Incisitermes, sex-linkage, translocation, interchange, Jamaica.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2001 ◽  
Vol 78 (1) ◽  
pp. 23-30 ◽  
Author(s):  
MARIKO KONDO ◽  
ERIKO NAGAO ◽  
HIROSHI MITANI ◽  
AKIHIRO SHIMA

In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.


1987 ◽  
Vol 88 (4) ◽  
pp. 441-452
Author(s):  
JULIA A. M. SWEDAK ◽  
ARTHUR FORER

Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. In Nephrotoma abbreviate the sex chromosomes are 8 μm long by 3.5 μm wide and have two orientations when they move: the long axis of the sex chromosome is either perpendicular or parallel to the spindle axis. We assume (1) that when a sex chromosome is perpendicular to the spindle axis it has a chromosomal spindle fibre to each pole, one from each kinetochore, as in other species; and (2) that when a sex chromosome is parallel to the spindle axis each kinetochore has spindle fibres to both poles, i.e. that the latter sex chromosomes are maloriented. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a ‘signal’ system. The results were different when one sex chromosome was maloriented. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. On the other hand, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. We argue that for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole.


PEDIATRICS ◽  
1988 ◽  
Vol 82 (1) ◽  
pp. 115-117
Author(s):  
MARVIN E. MILLER ◽  
STEPHEN SULKES

Klinefelter syndrome is a sex chromosome disorder with an incidence of approximately two per 1,000 male newborns.1 Eighty percent of individuals with Klinefelter syndrome are 47,XXY, whereas the other 20% have a variant sex chromosomal constitution with additional supernumerary X or Y chromosomes (ie, 48,XXXY, 48XXYY) or are mosaic.2 Individuals with Klinefelter syndrome have small testes which usually cannot produce sperm or normal amounts of testosterone. The results of this are infertility and undermasculinization. Behavioral and psychiatric problems are also common in individuals with Klinefelter syndrome and include personality disorder, reactive depression, schizophrenia, mental deficiency, sexual deviation, criminal behavior, and alcoholism.3


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.


2019 ◽  
Vol 116 (38) ◽  
pp. 19031-19036 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


Sign in / Sign up

Export Citation Format

Share Document