Development and molecular cytogenetic identification of new winter wheat – winter barley (‘Martonvásári 9 kr1’ – ‘Igri’) disomic addition lines

Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 43-50 ◽  
Author(s):  
É. Szakács ◽  
M. Molnár-Láng

This paper describes a series of winter wheat – winter barley disomic addition lines developed from hybrids between winter wheat line Triticum aestivum L. ‘Martonvásári 9 kr1’ and the German 2-rowed winter barley cultivar Hordeum vulgare L. ‘Igri’. The barley chromosomes in a wheat background were identified from the fluorescent in situ hybridization (FISH) patterns obtained with various combinations of repetitive DNA probes: GAA–HvT01 and pTa71–HvT01. The disomic addition lines 2H, 3H, and 4H and the 1HS isochromosome were identified on the basis of a 2-colour FISH with the DNA probe pairs GAA–pAs1, GAA–HvT01, and pTa71–HvT01. Genomic in situ hybridization was used to confirm the presence of the barley chromosomes in the wheat genome. The identification of the barley chromosomes in the addition lines was further confirmed with simple-sequence repeat markers. The addition lines were also characterized morphologically.

Genome ◽  
2010 ◽  
Vol 53 (1) ◽  
pp. 35-44 ◽  
Author(s):  
É. Szakács ◽  
M. Molnár-Láng

A previous paper reported the development of disomic addition lines (2H, 3H, 4H, and 1HS isochromosomic) from hybrids between the winter wheat ‘Martonvásári 9 kr1’ and the two-rowed winter barley cultivar ‘Igri’. The present paper describes the isolation of two new additions, the 7H disomic and 6HS ditelosomic additions, using fluorescence in situ hybridization with the repetitive DNA probes Afa-family and HvT01. The identification of the barley chromosomes in the wheat genome was confirmed with simple sequence repeat markers. The morphological characterization of the new addition lines is also discussed. Studies of the genetic stability of the whole set (2H, 3H, 4H, 7H, 1HS iso, 6HS) of ‘Martonvásári 9 kr1’ – ‘Igri’ additions revealed that the most stable disomic additions are 2H and 3H and the most unstable line is the 1HS isochromosomic addition.


Genome ◽  
2012 ◽  
Vol 55 (4) ◽  
pp. 302-311 ◽  
Author(s):  
Márta Molnár-Láng ◽  
Klaudia Kruppa ◽  
András Cseh ◽  
Julianna Bucsi ◽  
Gabriella Linc

To increase the allelic variation in wheat–barley introgressions, new wheat–barley disomic addition lines were developed containing the 2H, 3H, 4H, 6H, and 7H chromosomes of the six-rowed Ukrainian winter barley ‘Manas’. This cultivar is agronomically much better adapted to Central European environmental conditions than the two-rowed spring barley ‘Betzes’ previously used. A single ‘Asakaze’ × ‘Manas’ wheat × barley hybrid plant was multiplied in vitro and one backcross plant was obtained after pollinating 354 regenerant hybrids with wheat. The addition lines were selected from the self-fertilized seeds of the 16 BC2 plants using genomic in situ hybridization. The addition lines were identified by fluorescence in situ hybridization using repetitive DNA probes (HvT01, GAA, pTa71, and Afa family), followed by confirmation with barley SSR markers. The addition lines were grown in the phytotron and in the field, and morphological parameters (plant height, fertility, tillering, and spike characteristics) were measured. The production of the disomic additions will make it possible to incorporate the DNA of six-rowed winter barley into the wheat genome. Addition lines are useful for genetic studies on the traits of six-rowed winter barley and for producing new barley dissection lines.


1975 ◽  
Vol 55 (2) ◽  
pp. 529-535 ◽  
Author(s):  
M. K. POMEROY ◽  
C. J. ANDREWS ◽  
G. FEDAK

Increasing the duration of freezing of Kharkov winter wheat (Triticum aestivum L.) demonstrated that severe injury does not occur to plants at a freezing temperature (−6 C) well above the lethal temperature for at least 5 days, but progressively more damage occurs as the temperature approaches the killing point (−20 C). High levels of cold hardiness can be induced rapidly in Kharkov winter wheat if seedlings are grown for 4–6 days at 15 C day/10 C night, prior to being exposed to hardening conditions including diurnal freezing to −2 C. The cold hardiness of Kharkov and Rideau winter wheat seedlings grown from 1-yr-old seed was greater than that from 5-yr-old seed. Cold-acclimated Kharkov winter wheat and Dover winter barley (Hordeum vulgare L.) demonstrated the capacity to reharden after varying periods under dehardening conditions. The time required to reharden and the maximum level of hardiness attained by the plants was dependent on the amount of dehardening. Considerable rehardening was observed even when both dehardening and rehardening were carried out in the dark.


Genome ◽  
1999 ◽  
Vol 42 (1) ◽  
pp. 48-51 ◽  
Author(s):  
Huihuang Yan ◽  
Shaokai Min ◽  
Lihuang Zhu

Digoxigenin-labeled total genomic DNA from Oryza eichingeri was hybridized in situ to somatic chromosome preparations of F1, F2, backcross progenies, and a pollen-derived tetraploid plant (E24) from O. sativa (2n = 24, genome AA) × O. eichingeri (2n = 24, genome CC), which allowed a definitive discrimination between A- and C-genome chromosomes. Twelve chromosomes in F1, F2, BC1, and twenty-four chromosomes in plant E24 were clearly revealed to be of O. eichingeri origin, thus confirming that both BC1 and F2 were allotriploids (2n = 36, AAC) while plant E24 was an amphiploid (2n = 48, AACC). In addition, the presence of O. eichingeri chromosomes in four alien addition lines was characterized. The results suggest that FISH/GISH may be a powerful tool for monitoring the O. sativa-alien chromosome in the progenies of rice interspecific hybridization.Key words: fluorescent in situ hybridization, Oryza sativa, Oryza eichingeri, amphiploid, alien addition lines.


Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1070-1082 ◽  
Author(s):  
Annamária Schneider ◽  
Gabriella Linc ◽  
István Molnár ◽  
Márta Molnár-Láng

The aim of the experiments was to produce and identify different Triticum aestivum – Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum – Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, UbUbMbMb), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat – Ae. biuncialis addition lines were produced from the wheat – Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.Key words: Triticum aestivum, Aegilops biuncialis, fluorescence in situ hybridization, genomic in situ hybridization, wheat – Aegilops biuncialis addition lines.


2007 ◽  
Vol 177 (4S) ◽  
pp. 596-597
Author(s):  
Joseph P. Alukal ◽  
Bobby B. Najari ◽  
Wilson Chuang ◽  
Lata Murthy ◽  
Monica Lopez-Perdomo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document